
	

https://setopuvixaferu.vimemug.com/494830769620618389624379701451019098544504?merazodenevolovejanimuxisifugubufesolaguwonagukunorasebesuxakuwajuzagoxawemozofukik=nisawaxinurefomiwapimozikedolekoparowawevojoretexaberamonolamadupabudesununutugiluruferojokefugopodawejeganuwaronovuranozuvekiwubukusojogarogevapetetukusubirunitonebujenufazubevimejamamuwivalojedubikujop&utm_kwd=direct3d+11+tutorial&kazupegipewesimebezagidinitudobivefawodelabipikutuwukexesenotawanawajerebefe=xakijixuvoxevixovatolubupinafefiditowurujesopajumutinijuvekodaxenopuvazawilezanenopemonimotutofulezomaloluviwovuzi




Setting	Up	DirectX	11	for	3D	Rendering	with	Braynzar	Soft	Tutorials	####	Collection:	1519	Downloads	This	tutorial	series	covers	the	basics	of	setting	up	and	utilizing	DirectX	11	for	3D	rendering.	The	following	lessons	are	a	part	of	this	collection:	*	Setting	Up	in	VS	2010	(Lesson	1)	*	Initializing	Direct3D	11	(Lesson	2)	*	Begin	Drawing!	(Lesson	3)	*
Color	(Lesson	4)	*	Indices	(Lesson	5)	*	Depth	(Lesson	6)	*	World	View	and	Local	Spaces	(static	Camera)	(Lesson	7)	*	Transformations	(Lesson	8)	*	Render	States	(Lesson	9)	*	Textures	(Lesson	10)	*	Blending	(Lesson	11)	The	following	lessons	will	cover	additional	aspects	of	DirectX	11	for	3D	rendering:	*	Note:	The	provided	text	has	been	paraphrased	to
improve	readability	and	understanding.	This	tutorial	aims	to	cover	various	advanced	topics	in	graphics	rendering	using	Direct3D	11.	It	starts	with	adding	blending	effects	to	primitives,	allowing	for	stained	glass-like	appearances.	The	lesson	then	delves	into	the	issue	of	transparent	objects	not	always	being	fully	transparent	when	rendered	together.
Next,	it	briefly	covers	pixel	clipping	and	its	importance	in	efficiently	drawing	pixels	on	the	screen.	Moving	on,	it	tackles	a	more	complex	topic:	rendering	simple	fonts	within	Direct3D	11.	Due	to	Microsoft's	change	in	API	structure,	using	fonts	directly	with	D3D	11	is	challenging.	The	tutorial	explores	how	to	use	Direct2D	and	DirectWrite	for	font
implementation	alongside	D3D	10.1.	Subsequent	lessons	include	creating	a	high-resolution	timer	for	precise	timing	of	game	elements'	updates,	regardless	of	the	frame	rate,	and	a	lesson	on	simple	lighting	using	directional	light	sources.	It	then	proceeds	to	cover	point	lights,	demonstrating	how	they	can	be	used	in	conjunction	with	other	graphics
elements,	followed	by	an	explanation	of	Direct	Input	methods	from	users	through	keyboards,	mice,	or	joysticks.	Lastly,	it	discusses	implementing	a	first-person	camera	view	that	simulates	the	player's	perspective	while	moving	around	the	scene,	as	well	as	transitioning	to	fullscreen	mode	and	exiting	the	application	smoothly.	Getting	errors...	Let's	start
with	3D	textures!	In	this	series,	we'll	learn	about	Cube	Mapping	(Skybox),	which	involves	using	a	3D	texture	to	texture	a	sphere.	This	technique	is	perfect	for	creating	a	skybox.	Then,	we'll	move	on	to	Spotlights,	where	we'll	learn	how	to	implement	a	spotlight	as	a	flashlight.	We'll	build	upon	the	previous	lesson,	First-Person	Camera.	Next	up	is	Loading
Static	3D	Models	(.obj	Format),	which	will	teach	us	how	to	load	a	static	3D	model	from	an	.obj	file.	This	lesson	will	lay	the	groundwork	for	upcoming	lessons	on	Specular	Lighting	and	Normal	Mapping.	We'll	also	explore	Picking,	where	we'll	learn	how	to	turn	a	2D	screen	position	into	a	3D	ray	in	world	space.	This	allows	us	to	check	if	that	ray	intersects
with	any	objects	on	the	screen.	Finally,	we'll	cover	Bounding	Volumes,	which	are	essential	for	optimizing	performance	when	dealing	with	complex	scenes	and	many	models.	The	upcoming	lessons	will	cover	collision	detection	and	model	loading	techniques.	Lesson	26	focuses	on	bounding	volume	collision	detection,	where	objects	are	simplified	into
bounding	volumes	for	faster	computation.	Students	will	learn	to	build	a	pyramid	of	bottles	and	throw	one	when	clicking	the	mouse	button,	with	collision	resulting	in	score	increase.	Lesson	27	introduces	MD5	models,	which	come	in	two	files:	"md5mesh"	and	"md5anim".	The	first	lesson	covers	loading	the	MD5	model	from	the	"md5mesh"	file	and
setting	up	vertex	positions	based	on	joint	layout.	Students	will	also	learn	about	quaternions	and	how	bones	work	in	skinned	models.	The	second	part	of	Lesson	27,	Skeletal	Animation,	teaches	students	to	animate	the	MD5	model	using	a	skeletal	system.	This	system	is	memory-efficient	compared	to	keyframe	animations	and	allows	for	more	complex
movements	like	rag-doll	physics.	In	the	subsequent	lessons,	students	will	learn	about	a	free-look	camera,	heightmap	(terrain)	loading	from	grayscale	BMP	images,	and	sliding	camera	collision	detection	using	an	ellipsoid	technique.	We'll	dive	into	"Detection	and	Response"	by	Kasper	Fauerby,	exploring	collision	detection	between	a	swept	sphere	and
triangle.	This	results	in	a	smooth	"sliding"	camera	that	navigates	terrain,	stairs,	and	small	objects	without	getting	stuck	on	edges.	We'll	also	implement	gravity	to	prevent	floating	away.	This	technique	is	versatile	and	can	be	applied	to	any	object	or	even	modified	to	create	bouncing	effects	instead	of	sliding.	Next,	we'll	tackle	a	simple	3rd	person
camera	lesson,	teaching	you	how	to	create	a	vector	camera,	smoothly	rotate	your	character	towards	their	destination,	and	rotate	the	camera	around	them.	In	another	lesson,	we'll	delve	into	instancing	with	indexed	primitives,	rendering	a	forest	using	this	efficient	technique.	We'll	draw	400	trees	with	1000	leaves	each,	resulting	in	over	400,000	leaves!
This	method	can	significantly	boost	performance	by	reducing	the	number	of	objects	being	rendered.	The	next	lesson	focuses	on	CPU-side	frustum	culling,	which	allows	us	to	process	4000	trees	in	our	scene	efficiently.	We'll	learn	how	to	check	if	an	object's	AABB	is	within	the	camera's	view	and	only	send	relevant	data	to	the	GPU	for	more	accurate
rendering.	Finally,	we'll	create	a	map	by	rendering	terrain	onto	a	texture	and	drawing	it	in	the	backbuffer's	bottom	right	corner.	This	lesson	provides	a	straightforward	introduction	to	this	technique.	We	will	be	building	upon	this	concept	in	the	next	two	lessons.	A	method	called	billboarding	is	used	to	draw	distant	objects	by	rendering	a	single	quad
per	object	rather	than	drawing	the	entire	geometry.	This	technique	significantly	reduces	the	complexity	of	rendering	far-off	trees,	which	can	contain	thousands	of	faces.	In	our	lesson	today,	we'll	utilize	the	Geometry	shader	to	create	perspective-facing	billboarders.	The	process	involves	sending	a	single	point	to	the	shaders	and	expanding	it	into	a	quad
using	the	geometry	shader.	LearnD3D11	is	an	educational	resource	for	anyone	looking	to	learn	Direct3D11,	commonly	referred	to	as	DirectX	11.	This	guide	provides	a	comprehensive	overview	of	basic	Direct3D11	usage	and	general	graphics	programming	topics	without	requiring	prior	experience	in	the	field.	The	codebase	is	written	in	C++,	but	its
concepts	can	be	easily	adapted	to	other	languages	with	equivalent	skills.	Please	note	that	this	project	is	still	in	progress,	and	some	content	may	be	missing	or	contain	errors.	If	you	notice	any	typos,	bugs,	or	have	questions,	feel	free	to	open	an	issue	or	send	a	pull	request	on	our	platform.	You're	also	welcome	to	join	our	Discord	server	for	further
collaboration.	To	get	started	with	LearnD3D11,	simply	dive	into	the	first	chapter	and	begin	your	learning	journey.

Direct3d	11	install.	What	is	direct3d	11.	Direct3d	tutorial.	Direct3d	9	vs	11.	Direct3d	11	tutorial	c++.


