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Anatomy	of	CES	Production/Utility	Functions	in	Three	Dimensions	Peter	Fuleky	Department	of	Economics,	University	of	Washington	October	2006	Decreasing	returns	to	scale:	r=0.5	(Strongly	concave	production/utility	function)	Increasing	returns	to	scale:	r=1.5	(Quasiconcave	production/utility	function)	Constant	returns	to	scale:	r=1	(Weakly
concave	production/utility	function)	Constant	returns	to	scale	with	asymmetric	weighting:	r=1,	lambda=0.8	(Weakly	concave	production/utility	function)	Constant	returns	to	scale	with	asymmetric	productivity/utility:	r=1,	T=2	(Weakly	concave	production/utility	function)	Literature	and	further	reading:	The	Structure	of	Economics,	3rd	ed.,	Eugene
Silberberg	MATLAB	Documentation,	MathWorks	Anatomy	of	Cobb-Douglas	Functions	in	3D	Printable	version	of	this	document	(.pdf	format)	Concept	in	economicsConstant	elasticity	of	substitution	(CES)	is	a	common	specification	of	many	production	functions	and	utility	functions	in	neoclassical	economics.	CES	holds	that	the	ability	to	substitute	one
input	factor	with	another	(for	example	labour	with	capital)	to	maintain	the	same	level	of	production	stays	constant	over	different	production	levels.	For	utility	functions,	CES	means	the	consumer	has	constant	preferences	of	how	they	would	like	to	substitute	different	goods	(for	example	labour	with	consumption)	while	keeping	the	same	level	of	utility,
for	all	levels	of	utility.	What	this	means	is	that	both	producers	and	consumers	have	similar	input	structures	and	preferences	no	matter	the	level	of	output	or	utility.	The	vital	economic	element	of	the	measure	is	that	it	provided	the	producer	a	clear	picture	of	how	to	move	between	different	modes	or	types	of	production,	for	example	between	modes	of
production	relying	on	more	labour.	Several	economists	have	featured	in	the	topic	and	have	contributed	in	the	final	finding	of	the	constant.	They	include	Tom	McKenzie,	John	Hicks	and	Joan	Robinson.	Specifically,	it	arises	in	a	particular	type	of	aggregator	function	which	combines	two	or	more	types	of	consumption	goods,	or	two	or	more	types	of
production	inputs	into	an	aggregate	quantity.	This	aggregator	function	exhibits	constant	elasticity	of	substitution.Despite	having	several	factors	of	production	in	substitutability,	the	most	common	are	the	forms	of	elasticity	of	substitution.	On	the	contrary	of	restricting	direct	empirical	evaluation,	the	constant	Elasticity	of	Substitution	are	simple	to	use
and	hence	are	widely	used.[1]	McFadden	states	that;	The	constant	E.S	assumption	is	a	restriction	on	the	form	of	production	possibilities,	and	one	can	characterize	the	class	of	production	functions	which	have	this	property.	This	has	been	done	by	Arrow-Chenery-Minhas-Solow	for	the	two-factor	production	case.[1]	The	CES	production	function	is	a
neoclassical	production	function	that	displays	constant	elasticity	of	substitution.	In	other	words,	the	production	technology	has	a	constant	percentage	change	in	factor	(e.g.	labour	and	capital)	proportions	due	to	a	percentage	change	in	marginal	rate	of	technical	substitution.	The	two	factor	(capital,	labor)	CES	production	function	introduced	by	Solow,
[2]	and	later	made	popular	by	Arrow,	Chenery,	Minhas,	and	Solow	is:[3][4][5][6]	Q	=	F	(	a	K	+	(	1	a	)	L	)	{\displaystyle	Q=F\cdot	\left(a\cdot	K^{\rho	}+(1-a)\cdot	L^{\rho	}\right)^{\frac	{\upsilon	}{\rho	}}}	where	Q	{\displaystyle	Q}	=	Quantity	of	output	F	{\displaystyle	F}	=	Total	Factor	Productivity	a	{\displaystyle	a}	=	Share	parameter	K
{\displaystyle	K}	,	L	{\displaystyle	L}	=	Quantities	of	primary	production	factors	(Capital	and	Labor)	{\displaystyle	\rho	}	=	1	{\displaystyle	{\frac	{\sigma	-1}{\sigma	}}}	=	Substitution	parameter	{\displaystyle	\sigma	}	=	1	1	{\displaystyle	{\frac	{1}{1-\rho	}}}	=	Elasticity	of	substitution	{\displaystyle	\upsilon	}	=	degree	of	homogeneity	of	the
production	function.	Where	{\displaystyle	\upsilon	}	=	1	(Constant	return	to	scale),	{\displaystyle	\upsilon	}	<	1	(Decreasing	return	to	scale),	{\displaystyle	\upsilon	}	>	1	(Increasing	return	to	scale).As	its	name	suggests,	the	CES	production	function	exhibits	constant	elasticity	of	substitution	between	capital	and	labor.	Leontief,	linear	and
CobbDouglas	functions	are	special	cases	of	the	CES	production	function.	That	is,	If	{\displaystyle	\rho	}	approaches	1,	we	have	a	linear	or	perfect	substitutes	function;If	{\displaystyle	\rho	}	approaches	zero	in	the	limit,	we	get	the	CobbDouglas	production	function;If	{\displaystyle	\rho	}	approaches	negative	infinity	we	get	the	Leontief	or	perfect
complements	production	function.The	general	form	of	the	CES	production	function,	with	n	inputs,	is:[7]	Q	=	F	[	i	=	1	n	a	i	X	i	r	]	1	r	{\displaystyle	Q=F\cdot	\left[\sum	_{i=1}^{n}a_{i}X_{i}^{r}\	\right]^{\frac	{1}{r}}}	where	Q	{\displaystyle	Q}	=	Quantity	of	output	F	{\displaystyle	F}	=	Total	Factor	Productivity	a	i	{\displaystyle	a_{i}}	=	Share
parameter	of	input	i,	i	=	1	n	a	i	=	1	{\displaystyle	\sum	_{i=1}^{n}a_{i}=1}	X	i	{\displaystyle	X_{i}}	=	Quantities	of	factors	of	production	(i	=	1,2...n)	s	=	1	1	r	{\displaystyle	s={\frac	{1}{1-r}}}	=	Elasticity	of	substitution.Extending	the	CES	(Solow)	functional	form	to	accommodate	multiple	factors	of	production	creates	some	problems.	However,
there	is	no	completely	general	way	to	do	this.	Uzawa	showed	the	only	possible	n-factor	production	functions	(n>2)	with	constant	partial	elasticities	of	substitution	require	either	that	all	elasticities	between	pairs	of	factors	be	identical,	or	if	any	differ,	these	all	must	equal	each	other	and	all	remaining	elasticities	must	be	unity.[8]	This	is	true	for	any
production	function.	This	means	the	use	of	the	CES	functional	form	for	more	than	2	factors	will	generally	mean	that	there	is	not	constant	elasticity	of	substitution	among	all	factors.Nested	CES	functions	are	commonly	found	in	partial	equilibrium	and	general	equilibrium	models.	Different	nests	(levels)	allow	for	the	introduction	of	the	appropriate
elasticity	of	substitution.The	same	CES	functional	form	arises	as	a	utility	function	in	consumer	theory.	For	example,	if	there	exist	n	{\displaystyle	n}	types	of	consumption	goods	x	i	{\displaystyle	x_{i}}	,	then	aggregate	consumption	X	{\displaystyle	X}	could	be	defined	using	the	CES	aggregator:	X	=	[	i	=	1	n	a	i	1	s	x	i	s	1	s	]	s	s	1	.	{\displaystyle
X=\left[\sum	_{i=1}^{n}a_{i}^{\frac	{1}{s}}x_{i}^{\frac	{s-1}{s}}\	\right]^{\frac	{s}{s-1}}.}	Here	again,	the	coefficients	a	i	{\displaystyle	a_{i}}	are	share	parameters,	and	s	{\displaystyle	s}	is	the	elasticity	of	substitution.	Therefore,	the	consumption	goods	x	i	{\displaystyle	x_{i}}	are	perfect	substitutes	when	s	{\displaystyle	s}	approaches
infinity	and	perfect	complements	when	s	{\displaystyle	s}	approaches	zero.	In	the	case	where	s	{\displaystyle	s}	approaches	one	is	again	a	limiting	case	where	L'Hpital's	Rule	applies.	The	CES	aggregator	is	also	sometimes	called	the	Armington	aggregator,	which	was	discussed	by	Armington	(1969).[9]CES	utility	functions	are	a	special	case	of
homothetic	preferences.The	following	is	an	example	of	a	CES	utility	function	for	two	goods,	x	{\displaystyle	x}	and	y	{\displaystyle	y}	,	with	equal	shares:[10]:112	u	(	x	,	y	)	=	(	x	r	+	y	r	)	1	/	r	.	{\displaystyle	u(x,y)=(x^{r}+y^{r})^{1/r}.}	The	expenditure	function	in	this	case	is:	e	(	p	x	,	p	y	,	u	)	=	(	p	x	r	/	(	r	1	)	+	p	y	r	/	(	r	1	)	)	(	r	1	)	/	r	u	.
{\displaystyle	e(p_{x},p_{y},u)=(p_{x}^{r/(r-1)}+p_{y}^{r/(r-1)})^{(r-1)/r}\cdot	u.}	The	indirect	utility	function	is	its	inverse:	v	(	p	x	,	p	y	,	I	)	=	(	p	x	r	/	(	r	1	)	+	p	y	r	/	(	r	1	)	)	(	1	r	)	/	r	I	.	{\displaystyle	v(p_{x},p_{y},I)=(p_{x}^{r/(r-1)}+p_{y}^{r/(r-1)})^{(1-r)/r}\cdot	I.}	The	demand	functions	are:	x	(	p	x	,	p	y	,	I	)	=	p	x	1	/	(	r	1	)	p	x	r	/	(	r	1	)	+	p	y
r	/	(	r	1	)	I	,	{\displaystyle	x(p_{x},p_{y},I)={\frac	{p_{x}^{1/(r-1)}}{p_{x}^{r/(r-1)}+p_{y}^{r/(r-1)}}}\cdot	I,}	y	(	p	x	,	p	y	,	I	)	=	p	y	1	/	(	r	1	)	p	x	r	/	(	r	1	)	+	p	y	r	/	(	r	1	)	I	.	{\displaystyle	y(p_{x},p_{y},I)={\frac	{p_{y}^{1/(r-1)}}{p_{x}^{r/(r-1)}+p_{y}^{r/(r-1)}}}\cdot	I.}	A	CES	utility	function	is	one	of	the	cases	considered	by	Dixit	and
Stiglitz	(1977)	in	their	study	of	optimal	product	diversity	in	a	context	of	monopolistic	competition.[11]Note	the	difference	between	CES	utility	and	isoelastic	utility:	the	CES	utility	function	is	an	ordinal	utility	function	that	represents	preferences	on	sure	consumption	commodity	bundles,	while	the	isoelastic	utility	function	is	a	cardinal	utility	function
that	represents	preferences	on	lotteries.	A	CES	indirect	(dual)	utility	function	has	been	used	to	derive	utility-consistent	brand	demand	systems	where	category	demands	are	determined	endogenously	by	a	multi-category,	CES	indirect	(dual)	utility	function.	It	has	also	been	shown	that	CES	preferences	are	self-dual	and	that	both	primal	and	dual	CES
preferences	yield	systems	of	indifference	curves	that	may	exhibit	any	degree	of	convexity.[12]^	a	b	McFadden,	Daniel	(June	1963).	"Constant	Elasticity	of	Substitution	Production	Functions".	The	Review	of	Economic	Studies.	30	(2):	7383.	doi:10.2307/2295804.	ISSN0034-6527.	JSTOR2295804.^	Solow,	R.M	(1956).	"A	contribution	to	the	theory	of
economic	growth".	The	Quarterly	Journal	of	Economics.	70	(1):	6594.	doi:10.2307/1884513.	hdl:10338.dmlcz/143862.	JSTOR1884513.^	Arrow,	K.	J.;	Chenery,	H.	B.;	Minhas,	B.	S.;	Solow,	R.	M.	(1961).	"Capital-labor	substitution	and	economic	efficiency".	Review	of	Economics	and	Statistics.	43	(3):	225250.	doi:10.2307/1927286.	JSTOR1927286.^
Jorgensen,	Dale	W.	(2000).	Econometrics,	vol.	1:	Econometric	Modelling	of	Producer	Behavior.	Cambridge,	MA:	MIT	Press.	p.2.	ISBN978-0-262-10082-3.^	Klump,	R;	McAdam,	P;	Willman,	A.	(2007).	"Factor	Substitution	and	Factor	Augmenting	Technical	Progress	in	the	US:	A	Normalized	Supply-Side	System	Approach".	Review	of	Economics	and
Statistics.	89	(1):	183192.	doi:10.1162/rest.89.1.183.	hdl:10419/152801.	S2CID57570638.^	de	La	Grandville,	Olivier	(2016).	Economic	Growth:	A	Unified	Approach.	Cambridge	University	Press.	doi:10.1017/9781316335703.	ISBN9781316335703.^	tedb/Courses/GraduateTheoryUCSB/elasticity%20of%20substitutionrevised.tex.pdf	Archived	2022-01-
01	at	the	Wayback	Machine	[bare	URL	PDF]^	Uzawa,	H	(1962).	"Production	functions	with	constant	elasticities	of	substitution".	Review	of	Economic	Studies.	29	(4):	291299.	doi:10.2307/2296305.	JSTOR2296305.^	Armington,	P.	S.	(1969).	"A	theory	of	demand	for	products	distinguished	by	place	of	production".	IMF	Staff	Papers.	16	(1):	159178.
JSTOR3866403.^	Varian,	Hal	(1992).	Microeconomic	Analysis	(Thirded.).	New	York:	Norton.	ISBN0-393-95735-7.^	Dixit,	Avinash;	Stiglitz,	Joseph	(1977).	"Monopolistic	Competition	and	Optimum	Product	Diversity".	American	Economic	Review.	67	(3):	297308.	JSTOR1831401.^	Baltas,	George	(2001).	"Utility-Consistent	Brand	Demand	Systems	with
Endogenous	Category	Consumption:	Principles	and	Marketing	Applications".	Decision	Sciences.	32	(3):	399421.	doi:10.1111/j.1540-5915.2001.tb00965.x.Anatomy	of	CES	Type	Production	Functions	in	3DClosed	form	solution	for	a	firm	with	an	N-dimensional	CES	technologyMonopolists	revenue	functionRetrieved	from	"	in	economicsConstant	elasticity
of	substitution	(CES)	is	a	common	specification	of	many	production	functions	and	utility	functions	in	neoclassical	economics.	CES	holds	that	the	ability	to	substitute	one	input	factor	with	another	(for	example	labour	with	capital)	to	maintain	the	same	level	of	production	stays	constant	over	different	production	levels.	For	utility	functions,	CES	means
the	consumer	has	constant	preferences	of	how	they	would	like	to	substitute	different	goods	(for	example	labour	with	consumption)	while	keeping	the	same	level	of	utility,	for	all	levels	of	utility.	What	this	means	is	that	both	producers	and	consumers	have	similar	input	structures	and	preferences	no	matter	the	level	of	output	or	utility.	The	vital
economic	element	of	the	measure	is	that	it	provided	the	producer	a	clear	picture	of	how	to	move	between	different	modes	or	types	of	production,	for	example	between	modes	of	production	relying	on	more	labour.	Several	economists	have	featured	in	the	topic	and	have	contributed	in	the	final	finding	of	the	constant.	They	include	Tom	McKenzie,	John
Hicks	and	Joan	Robinson.	Specifically,	it	arises	in	a	particular	type	of	aggregator	function	which	combines	two	or	more	types	of	consumption	goods,	or	two	or	more	types	of	production	inputs	into	an	aggregate	quantity.	This	aggregator	function	exhibits	constant	elasticity	of	substitution.Despite	having	several	factors	of	production	in	substitutability,
the	most	common	are	the	forms	of	elasticity	of	substitution.	On	the	contrary	of	restricting	direct	empirical	evaluation,	the	constant	Elasticity	of	Substitution	are	simple	to	use	and	hence	are	widely	used.[1]	McFadden	states	that;	The	constant	E.S	assumption	is	a	restriction	on	the	form	of	production	possibilities,	and	one	can	characterize	the	class	of
production	functions	which	have	this	property.	This	has	been	done	by	Arrow-Chenery-Minhas-Solow	for	the	two-factor	production	case.[1]	The	CES	production	function	is	a	neoclassical	production	function	that	displays	constant	elasticity	of	substitution.	In	other	words,	the	production	technology	has	a	constant	percentage	change	in	factor	(e.g.	labour
and	capital)	proportions	due	to	a	percentage	change	in	marginal	rate	of	technical	substitution.	The	two	factor	(capital,	labor)	CES	production	function	introduced	by	Solow,[2]	and	later	made	popular	by	Arrow,	Chenery,	Minhas,	and	Solow	is:[3][4][5][6]	Q	=	F	(	a	K	+	(	1	a	)	L	)	{\displaystyle	Q=F\cdot	\left(a\cdot	K^{\rho	}+(1-a)\cdot	L^{\rho
}\right)^{\frac	{\upsilon	}{\rho	}}}	where	Q	{\displaystyle	Q}	=	Quantity	of	output	F	{\displaystyle	F}	=	Total	Factor	Productivity	a	{\displaystyle	a}	=	Share	parameter	K	{\displaystyle	K}	,	L	{\displaystyle	L}	=	Quantities	of	primary	production	factors	(Capital	and	Labor)	{\displaystyle	\rho	}	=	1	{\displaystyle	{\frac	{\sigma	-1}{\sigma	}}}	=
Substitution	parameter	{\displaystyle	\sigma	}	=	1	1	{\displaystyle	{\frac	{1}{1-\rho	}}}	=	Elasticity	of	substitution	{\displaystyle	\upsilon	}	=	degree	of	homogeneity	of	the	production	function.	Where	{\displaystyle	\upsilon	}	=	1	(Constant	return	to	scale),	{\displaystyle	\upsilon	}	<	1	(Decreasing	return	to	scale),	{\displaystyle	\upsilon	}	>	1
(Increasing	return	to	scale).As	its	name	suggests,	the	CES	production	function	exhibits	constant	elasticity	of	substitution	between	capital	and	labor.	Leontief,	linear	and	CobbDouglas	functions	are	special	cases	of	the	CES	production	function.	That	is,	If	{\displaystyle	\rho	}	approaches	1,	we	have	a	linear	or	perfect	substitutes	function;If	{\displaystyle
\rho	}	approaches	zero	in	the	limit,	we	get	the	CobbDouglas	production	function;If	{\displaystyle	\rho	}	approaches	negative	infinity	we	get	the	Leontief	or	perfect	complements	production	function.The	general	form	of	the	CES	production	function,	with	n	inputs,	is:[7]	Q	=	F	[	i	=	1	n	a	i	X	i	r	]	1	r	{\displaystyle	Q=F\cdot	\left[\sum
_{i=1}^{n}a_{i}X_{i}^{r}\	\right]^{\frac	{1}{r}}}	where	Q	{\displaystyle	Q}	=	Quantity	of	output	F	{\displaystyle	F}	=	Total	Factor	Productivity	a	i	{\displaystyle	a_{i}}	=	Share	parameter	of	input	i,	i	=	1	n	a	i	=	1	{\displaystyle	\sum	_{i=1}^{n}a_{i}=1}	X	i	{\displaystyle	X_{i}}	=	Quantities	of	factors	of	production	(i	=	1,2...n)	s	=	1	1	r
{\displaystyle	s={\frac	{1}{1-r}}}	=	Elasticity	of	substitution.Extending	the	CES	(Solow)	functional	form	to	accommodate	multiple	factors	of	production	creates	some	problems.	However,	there	is	no	completely	general	way	to	do	this.	Uzawa	showed	the	only	possible	n-factor	production	functions	(n>2)	with	constant	partial	elasticities	of	substitution
require	either	that	all	elasticities	between	pairs	of	factors	be	identical,	or	if	any	differ,	these	all	must	equal	each	other	and	all	remaining	elasticities	must	be	unity.[8]	This	is	true	for	any	production	function.	This	means	the	use	of	the	CES	functional	form	for	more	than	2	factors	will	generally	mean	that	there	is	not	constant	elasticity	of	substitution
among	all	factors.Nested	CES	functions	are	commonly	found	in	partial	equilibrium	and	general	equilibrium	models.	Different	nests	(levels)	allow	for	the	introduction	of	the	appropriate	elasticity	of	substitution.The	same	CES	functional	form	arises	as	a	utility	function	in	consumer	theory.	For	example,	if	there	exist	n	{\displaystyle	n}	types	of
consumption	goods	x	i	{\displaystyle	x_{i}}	,	then	aggregate	consumption	X	{\displaystyle	X}	could	be	defined	using	the	CES	aggregator:	X	=	[	i	=	1	n	a	i	1	s	x	i	s	1	s	]	s	s	1	.	{\displaystyle	X=\left[\sum	_{i=1}^{n}a_{i}^{\frac	{1}{s}}x_{i}^{\frac	{s-1}{s}}\	\right]^{\frac	{s}{s-1}}.}	Here	again,	the	coefficients	a	i	{\displaystyle	a_{i}}	are	share
parameters,	and	s	{\displaystyle	s}	is	the	elasticity	of	substitution.	Therefore,	the	consumption	goods	x	i	{\displaystyle	x_{i}}	are	perfect	substitutes	when	s	{\displaystyle	s}	approaches	infinity	and	perfect	complements	when	s	{\displaystyle	s}	approaches	zero.	In	the	case	where	s	{\displaystyle	s}	approaches	one	is	again	a	limiting	case	where
L'Hpital's	Rule	applies.	The	CES	aggregator	is	also	sometimes	called	the	Armington	aggregator,	which	was	discussed	by	Armington	(1969).[9]CES	utility	functions	are	a	special	case	of	homothetic	preferences.The	following	is	an	example	of	a	CES	utility	function	for	two	goods,	x	{\displaystyle	x}	and	y	{\displaystyle	y}	,	with	equal	shares:[10]:112	u	(	x
,	y	)	=	(	x	r	+	y	r	)	1	/	r	.	{\displaystyle	u(x,y)=(x^{r}+y^{r})^{1/r}.}	The	expenditure	function	in	this	case	is:	e	(	p	x	,	p	y	,	u	)	=	(	p	x	r	/	(	r	1	)	+	p	y	r	/	(	r	1	)	)	(	r	1	)	/	r	u	.	{\displaystyle	e(p_{x},p_{y},u)=(p_{x}^{r/(r-1)}+p_{y}^{r/(r-1)})^{(r-1)/r}\cdot	u.}	The	indirect	utility	function	is	its	inverse:	v	(	p	x	,	p	y	,	I	)	=	(	p	x	r	/	(	r	1	)	+	p	y	r	/	(	r	1	)	)	(
1	r	)	/	r	I	.	{\displaystyle	v(p_{x},p_{y},I)=(p_{x}^{r/(r-1)}+p_{y}^{r/(r-1)})^{(1-r)/r}\cdot	I.}	The	demand	functions	are:	x	(	p	x	,	p	y	,	I	)	=	p	x	1	/	(	r	1	)	p	x	r	/	(	r	1	)	+	p	y	r	/	(	r	1	)	I	,	{\displaystyle	x(p_{x},p_{y},I)={\frac	{p_{x}^{1/(r-1)}}{p_{x}^{r/(r-1)}+p_{y}^{r/(r-1)}}}\cdot	I,}	y	(	p	x	,	p	y	,	I	)	=	p	y	1	/	(	r	1	)	p	x	r	/	(	r	1	)	+	p	y	r	/	(	r	1	)	I	.
{\displaystyle	y(p_{x},p_{y},I)={\frac	{p_{y}^{1/(r-1)}}{p_{x}^{r/(r-1)}+p_{y}^{r/(r-1)}}}\cdot	I.}	A	CES	utility	function	is	one	of	the	cases	considered	by	Dixit	and	Stiglitz	(1977)	in	their	study	of	optimal	product	diversity	in	a	context	of	monopolistic	competition.[11]Note	the	difference	between	CES	utility	and	isoelastic	utility:	the	CES	utility
function	is	an	ordinal	utility	function	that	represents	preferences	on	sure	consumption	commodity	bundles,	while	the	isoelastic	utility	function	is	a	cardinal	utility	function	that	represents	preferences	on	lotteries.	A	CES	indirect	(dual)	utility	function	has	been	used	to	derive	utility-consistent	brand	demand	systems	where	category	demands	are
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common	specification	of	many	production	functions	and	utility	functions	in	neoclassical	economics.	CES	holds	that	the	ability	to	substitute	one	input	factor	with	another	(for	example	labour	with	capital)	to	maintain	the	same	level	of	production	stays	constant	over	different	production	levels.	For	utility	functions,	CES	means	the	consumer	has	constant
preferences	of	how	they	would	like	to	substitute	different	goods	(for	example	labour	with	consumption)	while	keeping	the	same	level	of	utility,	for	all	levels	of	utility.	What	this	means	is	that	both	producers	and	consumers	have	similar	input	structures	and	preferences	no	matter	the	level	of	output	or	utility.	The	vital	economic	element	of	the	measure	is
that	it	provided	the	producer	a	clear	picture	of	how	to	move	between	different	modes	or	types	of	production,	for	example	between	modes	of	production	relying	on	more	labour.	Several	economists	have	featured	in	the	topic	and	have	contributed	in	the	final	finding	of	the	constant.	They	include	Tom	McKenzie,	John	Hicks	and	Joan	Robinson.	Specifically,
it	arises	in	a	particular	type	of	aggregator	function	which	combines	two	or	more	types	of	consumption	goods,	or	two	or	more	types	of	production	inputs	into	an	aggregate	quantity.	This	aggregator	function	exhibits	constant	elasticity	of	substitution.Despite	having	several	factors	of	production	in	substitutability,	the	most	common	are	the	forms	of
elasticity	of	substitution.	On	the	contrary	of	restricting	direct	empirical	evaluation,	the	constant	Elasticity	of	Substitution	are	simple	to	use	and	hence	are	widely	used.[1]	McFadden	states	that;	The	constant	E.S	assumption	is	a	restriction	on	the	form	of	production	possibilities,	and	one	can	characterize	the	class	of	production	functions	which	have	this
property.	This	has	been	done	by	Arrow-Chenery-Minhas-Solow	for	the	two-factor	production	case.[1]	The	CES	production	function	is	a	neoclassical	production	function	that	displays	constant	elasticity	of	substitution.	In	other	words,	the	production	technology	has	a	constant	percentage	change	in	factor	(e.g.	labour	and	capital)	proportions	due	to	a
percentage	change	in	marginal	rate	of	technical	substitution.	The	two	factor	(capital,	labor)	CES	production	function	introduced	by	Solow,[2]	and	later	made	popular	by	Arrow,	Chenery,	Minhas,	and	Solow	is:[3][4][5][6]	Q	=	F	(	a	K	+	(	1	a	)	L	)	{\displaystyle	Q=F\cdot	\left(a\cdot	K^{\rho	}+(1-a)\cdot	L^{\rho	}\right)^{\frac	{\upsilon	}{\rho	}}}
where	Q	{\displaystyle	Q}	=	Quantity	of	output	F	{\displaystyle	F}	=	Total	Factor	Productivity	a	{\displaystyle	a}	=	Share	parameter	K	{\displaystyle	K}	,	L	{\displaystyle	L}	=	Quantities	of	primary	production	factors	(Capital	and	Labor)	{\displaystyle	\rho	}	=	1	{\displaystyle	{\frac	{\sigma	-1}{\sigma	}}}	=	Substitution	parameter	{\displaystyle
\sigma	}	=	1	1	{\displaystyle	{\frac	{1}{1-\rho	}}}	=	Elasticity	of	substitution	{\displaystyle	\upsilon	}	=	degree	of	homogeneity	of	the	production	function.	Where	{\displaystyle	\upsilon	}	=	1	(Constant	return	to	scale),	{\displaystyle	\upsilon	}	<	1	(Decreasing	return	to	scale),	{\displaystyle	\upsilon	}	>	1	(Increasing	return	to	scale).As	its	name
suggests,	the	CES	production	function	exhibits	constant	elasticity	of	substitution	between	capital	and	labor.	Leontief,	linear	and	CobbDouglas	functions	are	special	cases	of	the	CES	production	function.	That	is,	If	{\displaystyle	\rho	}	approaches	1,	we	have	a	linear	or	perfect	substitutes	function;If	{\displaystyle	\rho	}	approaches	zero	in	the	limit,	we
get	the	CobbDouglas	production	function;If	{\displaystyle	\rho	}	approaches	negative	infinity	we	get	the	Leontief	or	perfect	complements	production	function.The	general	form	of	the	CES	production	function,	with	n	inputs,	is:[7]	Q	=	F	[	i	=	1	n	a	i	X	i	r	]	1	r	{\displaystyle	Q=F\cdot	\left[\sum	_{i=1}^{n}a_{i}X_{i}^{r}\	\right]^{\frac	{1}{r}}}	where
Q	{\displaystyle	Q}	=	Quantity	of	output	F	{\displaystyle	F}	=	Total	Factor	Productivity	a	i	{\displaystyle	a_{i}}	=	Share	parameter	of	input	i,	i	=	1	n	a	i	=	1	{\displaystyle	\sum	_{i=1}^{n}a_{i}=1}	X	i	{\displaystyle	X_{i}}	=	Quantities	of	factors	of	production	(i	=	1,2...n)	s	=	1	1	r	{\displaystyle	s={\frac	{1}{1-r}}}	=	Elasticity	of
substitution.Extending	the	CES	(Solow)	functional	form	to	accommodate	multiple	factors	of	production	creates	some	problems.	However,	there	is	no	completely	general	way	to	do	this.	Uzawa	showed	the	only	possible	n-factor	production	functions	(n>2)	with	constant	partial	elasticities	of	substitution	require	either	that	all	elasticities	between	pairs	of
factors	be	identical,	or	if	any	differ,	these	all	must	equal	each	other	and	all	remaining	elasticities	must	be	unity.[8]	This	is	true	for	any	production	function.	This	means	the	use	of	the	CES	functional	form	for	more	than	2	factors	will	generally	mean	that	there	is	not	constant	elasticity	of	substitution	among	all	factors.Nested	CES	functions	are	commonly
found	in	partial	equilibrium	and	general	equilibrium	models.	Different	nests	(levels)	allow	for	the	introduction	of	the	appropriate	elasticity	of	substitution.The	same	CES	functional	form	arises	as	a	utility	function	in	consumer	theory.	For	example,	if	there	exist	n	{\displaystyle	n}	types	of	consumption	goods	x	i	{\displaystyle	x_{i}}	,	then	aggregate
consumption	X	{\displaystyle	X}	could	be	defined	using	the	CES	aggregator:	X	=	[	i	=	1	n	a	i	1	s	x	i	s	1	s	]	s	s	1	.	{\displaystyle	X=\left[\sum	_{i=1}^{n}a_{i}^{\frac	{1}{s}}x_{i}^{\frac	{s-1}{s}}\	\right]^{\frac	{s}{s-1}}.}	Here	again,	the	coefficients	a	i	{\displaystyle	a_{i}}	are	share	parameters,	and	s	{\displaystyle	s}	is	the	elasticity	of
substitution.	Therefore,	the	consumption	goods	x	i	{\displaystyle	x_{i}}	are	perfect	substitutes	when	s	{\displaystyle	s}	approaches	infinity	and	perfect	complements	when	s	{\displaystyle	s}	approaches	zero.	In	the	case	where	s	{\displaystyle	s}	approaches	one	is	again	a	limiting	case	where	L'Hpital's	Rule	applies.	The	CES	aggregator	is	also
sometimes	called	the	Armington	aggregator,	which	was	discussed	by	Armington	(1969).[9]CES	utility	functions	are	a	special	case	of	homothetic	preferences.The	following	is	an	example	of	a	CES	utility	function	for	two	goods,	x	{\displaystyle	x}	and	y	{\displaystyle	y}	,	with	equal	shares:[10]:112	u	(	x	,	y	)	=	(	x	r	+	y	r	)	1	/	r	.	{\displaystyle	u(x,y)=
(x^{r}+y^{r})^{1/r}.}	The	expenditure	function	in	this	case	is:	e	(	p	x	,	p	y	,	u	)	=	(	p	x	r	/	(	r	1	)	+	p	y	r	/	(	r	1	)	)	(	r	1	)	/	r	u	.	{\displaystyle	e(p_{x},p_{y},u)=(p_{x}^{r/(r-1)}+p_{y}^{r/(r-1)})^{(r-1)/r}\cdot	u.}	The	indirect	utility	function	is	its	inverse:	v	(	p	x	,	p	y	,	I	)	=	(	p	x	r	/	(	r	1	)	+	p	y	r	/	(	r	1	)	)	(	1	r	)	/	r	I	.	{\displaystyle	v(p_{x},p_{y},I)=
(p_{x}^{r/(r-1)}+p_{y}^{r/(r-1)})^{(1-r)/r}\cdot	I.}	The	demand	functions	are:	x	(	p	x	,	p	y	,	I	)	=	p	x	1	/	(	r	1	)	p	x	r	/	(	r	1	)	+	p	y	r	/	(	r	1	)	I	,	{\displaystyle	x(p_{x},p_{y},I)={\frac	{p_{x}^{1/(r-1)}}{p_{x}^{r/(r-1)}+p_{y}^{r/(r-1)}}}\cdot	I,}	y	(	p	x	,	p	y	,	I	)	=	p	y	1	/	(	r	1	)	p	x	r	/	(	r	1	)	+	p	y	r	/	(	r	1	)	I	.	{\displaystyle	y(p_{x},p_{y},I)={\frac
{p_{y}^{1/(r-1)}}{p_{x}^{r/(r-1)}+p_{y}^{r/(r-1)}}}\cdot	I.}	A	CES	utility	function	is	one	of	the	cases	considered	by	Dixit	and	Stiglitz	(1977)	in	their	study	of	optimal	product	diversity	in	a	context	of	monopolistic	competition.[11]Note	the	difference	between	CES	utility	and	isoelastic	utility:	the	CES	utility	function	is	an	ordinal	utility	function	that
represents	preferences	on	sure	consumption	commodity	bundles,	while	the	isoelastic	utility	function	is	a	cardinal	utility	function	that	represents	preferences	on	lotteries.	A	CES	indirect	(dual)	utility	function	has	been	used	to	derive	utility-consistent	brand	demand	systems	where	category	demands	are	determined	endogenously	by	a	multi-category,
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Production	A[Production	Function]	-.	approximation	.->	D(Translog	Production	Function)	end	subgraph	Cost	B[Cost	Function]	-.	approximation	.->	C(Translog	Cost	Function)	end	A	==	Conversion	via	Duality	==>	BFigure1:	A	diagram	of	the	relationship	between	production	functions	and	cost	functions.Before	I	start,	the	graph	above	illustrate	the
relations.	Specifically,	we	can	derive	the	cost	function	from	a	CES	production	function	via	the	duality	theorem.	Translog	production	and	translog	cost	functions	are	approximations	to	the	production	and	corresponding	cost	function,	respectively,	via	Taylor	expansion.	Lets	start	from	the	a	general	production	function,	CES	(Constant	Elasticity	of
Substitution).The	standard	CES	production	function	with	two	factors	\(X_1\)	and	\(X_2\)	is	given	by:\[\begin{equation}\label{eq:ces-production}Q	=	A	\left(	\alpha_1	X_1^{\rho}	+	\alpha_2	X_2^{\rho}	\right)^{\frac{1}{\rho}}\end{equation}\tag{1}\]where	\(\alpha_1+\alpha_2=1\),	\(A\)	is	a	scale	parameter,	\(\alpha\)	is	the	distribution	parameter,
and	\(\rho\)	is	the	substitution	parameter.The	Cobb-Douglas	production	function	is	a	special	case	of	the	CES	function	when	\(\rho	\to	0\):\[Q	=	A	X_1^{\alpha}	X_2^{1-\alpha}\]	Taking	the	natural	logarithm	of	both	sides	of	Equation	Equation1,	we	get:\[\begin{equation}\label{eq:log-form-ces-production}\ln	Q	=	\ln	A	+	\frac{1}{\rho}	\ln	\left[	\alpha
X_1^{\rho}	+	(1-\alpha)	X_2^{\rho}	\right]\end{equation}\tag{2}\]The	Taylor	expansion	of	\(\frac{1}{\rho}	\ln	\left[	\alpha	X_1^{\rho}	+	(1-\alpha)	X_2^{\rho}	\right]\)	around	\(\rho=0\)	is	11This	is	computed	in	Mathematica:expr	=	Series[1/rho	*	Log[alpha*X1^rho	+	(1	-	alpha)*X2^rho],	{rho,	0,	1}];simplifiedExpr	=
FullSimplify[expr];TeXForm[simplifiedExpr]\[\begin{equation}\label{eq:taylor-expansion-of-ces}\alpha	\ln	X_1	+	(1-\alpha)	\ln	X_2-\frac{1}{2}	\rho	\left[(\alpha	-1)	\alpha	(\ln	X_1-\ln	X_2)^2\right]+O\left(\rho	^2\right)\end{equation}\tag{3}\]Omitting	\(O\left(\rho	^2\right)\)	and	substituting	the	Taylor	expansion	into	Equation	Equation2,	we	have\
[\begin{align}\label{eq:log-production-with-taylor}\ln	Q	&=	\ln	A	\\&+	\alpha	\ln	X_1	+	(1-\alpha)	\ln	X_2-\frac{1}{2}	\rho	\left[(\alpha	-1)	\alpha	(\ln	X_1-\ln	X_2)^2\right]	onumber\end{align}\tag{4}\]which	clearly	is	a	function	of	\(\ln	X_1\),	\(\ln	X_2\)	and	their	interaction	terms.We	can	therefore	reparameterize	Equation	Equation4	and	get	the
Translog	production	function:\[\begin{align}\ln	Q	&=	a_0	+	a_1	\ln	X_1	+	a_2	\ln	X_2	\\&+	b_{11}	(\ln	X_1)^2	+	b_{22}	(\ln	X_2)^2	+	b_{12}	\ln	X_1	\ln	X_2	onumber\end{align}\]Here,	\(a_1\)	and	\(a_2\)	are	coefficients	that	capture	the	first-order	effects,	and	\(b_{11}\),	\(b_{22}\),	and	\(b_{12}\)	are	coefficients	that	capture	the	second-order
effects.If	we	use	fist-order	Taylor	expansion	in	Equation	Equation3	instead,	we	will	end	up	with	a	log-linear	production	function.	Given	the	CES	production	function	Equation1,	we	can	derive	the	cost	function	via	the	duality	theorem.The	production	function	describes	the	maximum	output	\(Q\)	that	can	be	produced	given	the	input	factors.Given	a
production	function	and	input	prices,	the	firm	aims	to	minimize	its	costs	subject	to	the	constraint	of	producing	a	given	output	level	\(Q\).	This	leads	to	a	cost	minimization	problem.Cost	minimization	and	the	production	maximization	are	essentially	dual	to	each	other.	The	conditions	that	solve	one	problem	can	be	used	to	solve	the	other.	This	is	a
manifestation	of	the	more	general	concept	of	duality	in	optimization	theory.Recall	that	the	CES	production	function	is\[Q	=	A	\left(	\alpha_1	X_1^{\rho}	+	\alpha_2	X_2^{\rho}	\right)^{\frac{1}{\rho}}\]The	firms	cost	function	is\[\begin{equation}\label{eq:cost-function}C	=	w_1	X_1	+	w_2	X_2\end{equation}\tag{5}\]where	\(w_1\)	and	\(w_2\)	are	the
factor	prices.	To	derive	the	cost	function	from	the	given	CES	production	function,	we	need	to	find	the	minimum	cost	of	producing	a	given	level	of	output	\(Q\)	given	input	prices	\(w_1\)	and	\(w_2\).The	cost	minimization	problem	is:\[\begin{equation}\min_{X_1,	X_2}	\quad	C=w_1	X_1	+	w_2	X_2\end{equation}\]subject	to:\[\begin{equation}A	\left(
\alpha_1	X_1^{\rho}	+	\alpha_2	X_2^{\rho}	\right)^{\frac{1}{\rho}}	=	Q\end{equation}\]This	part	is	math-heavy.	The	derived	cost	function	is	given	by	Equation	Equation11.The	Lagrangian	for	this	problem	is:\[\begin{equation}\mathcal{L}	=	w_1	X_1	+	w_2	X_2	+	\lambda	\left[	Q	-	A	\left(	\alpha_1	X_1^{\rho}	+	\alpha_2	X_2^{\rho}
\right)^{\frac{1}{\rho}}	\right]\end{equation}\]Take	the	first-order	conditions:\[\begin{align}\frac{\partial	\mathcal{L}}{\partial	X_1}	&=	w_1	-	\lambda	A	\alpha_1	\rho	X_1^{\rho-1}	\left(	\alpha_1	X_1^{\rho}	+	\alpha_2	X_2^{\rho}	\right)^{\frac{1}{\rho}-1}	=	0	\\\frac{\partial	\mathcal{L}}{\partial	X_2}	&=	w_2	-	\lambda	A	\alpha_2	\rho
X_2^{\rho-1}	\left(	\alpha_1	X_1^{\rho}	+	\alpha_2	X_2^{\rho}	\right)^{\frac{1}{\rho}-1}	=	0	\\\frac{\partial	\mathcal{L}}{\partial	\lambda}	&=	Q	-	A	\left(	\alpha_1	X_1^{\rho}	+	\alpha_2	X_2^{\rho}	\right)^{\frac{1}{\rho}}	=	0\end{align}\]Solve	the	first	two	equations	for	\(\lambda\):\[\begin{equation}\label{eq:lambda}\lambda	=	\frac{w_1}
{A	\alpha_1	\rho	X_1^{\rho-1}	\left(	\alpha_1	X_1^{\rho}	+	\alpha_2	X_2^{\rho}	\right)^{\frac{1}{\rho}-1}}	=	\frac{w_2}{A	\alpha_2	\rho	X_2^{\rho-1}	\left(	\alpha_1	X_1^{\rho}	+	\alpha_2	X_2^{\rho}	\right)^{\frac{1}{\rho}-1}}\end{equation}\tag{6}\]Simplifying	Equation6,	we	get:\[\begin{equation}\label{eq:lambda-equal}w_1	X_2^{\rho-1}
\alpha_2	=	w_2	X_1^{\rho-1}	\alpha_1\end{equation}\tag{7}\]Manipulating	Equation7,	we	have:\[\begin{equation}\frac{X_1}{X_2}	=	\left(\frac{\alpha_2	w_1}{\alpha_1	w_2}\right)^{\frac{1}{\rho-1}}\end{equation}\]so	that\[\begin{align}(\alpha_2	w_1)^{\frac{\rho}{\rho-1}}	X_2^{\rho}	&=	(\alpha_1	w_2)^{\frac{\rho}{\rho-1}}	X_1^{\rho}
\\\left(w_1^{\frac{\rho}{\rho-1}}	\alpha_1^{\frac{-1}{\rho-1}}\right)	\alpha_2	X_2^{\rho}	&=	\left(w_2^{\frac{\rho}{\rho-1}}	\alpha_2^{\frac{-1}{\rho-1}}\right)	\alpha_1	X_1^{\rho}\end{align}\]Adding	\(\left(w_2^{\frac{\rho}{\rho-1}}	\alpha_2^{\frac{-1}{\rho-1}}\right)	\alpha_2	X_2^{\rho}\)	to	both	sides,	we	have\
[\begin{align}\left(w_1^{\frac{\rho}{\rho-1}}	\alpha_1^{\frac{-1}{\rho-1}}\right)	\alpha_2	X_2^{\rho}	+	\left(w_2^{\frac{\rho}{\rho-1}}	\alpha_2^{\frac{-1}{\rho-1}}\right)	\alpha_2	X_2^{\rho}&=	\left(w_2^{\frac{\rho}{\rho-1}}	\alpha_2^{\frac{-1}{\rho-1}}\right)	\alpha_1	X_1^{\rho}	+	\left(w_2^{\frac{\rho}{\rho-1}}	\alpha_2^{\frac{-1}
{\rho-1}}\right)	\alpha_2	X_2^{\rho}	onumber	\\\left(w_1^{\frac{\rho}{\rho-1}}	\alpha_1^{\frac{-1}{\rho-1}}	+	w_2^{\frac{\rho}{\rho-1}}	\alpha_2^{\frac{-1}{\rho-1}}\right)	\alpha_2	X_2^{\rho}&=	\left(w_2^{\frac{\rho}{\rho-1}}	\alpha_2^{\frac{-1}{\rho-1}}\right)	\left(\alpha_1	X_1^{\rho}	+	\alpha_2	X_2^{\rho}\right)\end{align}\]Raise
both	sides	to	the	power	of	\(\frac{1}{\rho}\),	we	have\[\begin{equation}\label{eq:x2_before_simplification}\left(w_1^{\frac{\rho}{\rho-1}}	\alpha_1^{\frac{-1}{\rho-1}}	+	w_2^{\frac{\rho}{\rho-1}}	\alpha_2^{\frac{-1}{\rho-1}}	\right)^{\frac{1}{\rho}}	\alpha_2^{\frac{1}{\rho}}	X_2=	\left(w_2^{\frac{\rho}{\rho-1}}	\alpha_2^{\frac{-1}{\rho-
1}}\right)^{\frac{1}{\rho}}	\left(\alpha_1	X_1^{\rho}	+	\alpha_2	X_2^{\rho}\right)^{\frac{1}{\rho}}\end{equation}\tag{8}\]Let	\(K	=	\left(w_1^{\frac{\rho}{\rho-1}}	\alpha_1^{\frac{-1}{\rho-1}}	+	w_2^{\frac{\rho}{\rho-1}}	\alpha_2^{\frac{-1}{\rho-1}}	\right)^{\frac{1}{\rho}}\),	observe	that	\(\frac{Q}{A}	=	\left(\alpha_1	X_1^{\rho}	+
\alpha_2	X_2^{\rho}\right)^{\frac{1}{\rho}}\),	we	can	simplify	Equation8	to\[\begin{equation}K	\alpha_2^{\frac{1}{\rho}}	X_2	=	\left(w_2^{\frac{\rho}{\rho-1}}	\alpha_2^{\frac{-1}{\rho-1}}\right)^{\frac{1}{\rho}}	\frac{Q}{A}\end{equation}\]Therefore,	\(X_2\)	is	given	by\[\begin{equation}\label{eq:x2}X_2	=	K^{-1}	w_2^{\frac{1}{\rho-1}}
\alpha_2^{\frac{-1}{\rho-1}}	\frac{Q}{A}\end{equation}\tag{9}\]We	can	similarly	get	\(X_1\)\[\begin{equation}\label{eq:x1}X_1	=	K^{-1}	w_1^{\frac{1}{\rho-1}}	\alpha_1^{\frac{-1}{\rho-1}}	\frac{Q}{A}\end{equation}\tag{10}\]Substituting	Equation10	and	Equation9	into	the	cost	function	Equation5,	we	have\[\begin{align}C	&=	w_1	X_1	+
w_2	X_2	onumber	\\&=	K^{-1}	w_1^{\frac{\rho}{\rho-1}}	\alpha_1^{\frac{-1}{\rho-1}}	\frac{Q}{A}	+	K^{-1}	w_2^{\frac{\rho}{\rho-1}}	\alpha_2^{\frac{-1}{\rho-1}}	\frac{Q}{A}	\\&=	\frac{Q}{A}	K^{-1}	\left(w_1^{\frac{\rho}{\rho-1}}	\alpha_1^{\frac{-1}{\rho-1}}	+	w_2^{\frac{\rho}{\rho-1}}	\alpha_2^{\frac{-1}{\rho-
1}}\right)\end{align}\]Since	\(K	=	\left(w_1^{\frac{\rho}{\rho-1}}	\alpha_1^{\frac{-1}{\rho-1}}	+	w_2^{\frac{\rho}{\rho-1}}	\alpha_2^{\frac{-1}{\rho-1}}	\right)^{\frac{1}{\rho}}\),	we	have	the	derived	cost	function:Cost	function	derived	from	CES	production	function\[\begin{equation}\label{eq:derived-cost-function}C	=	\frac{Q}{A}
\left(w_1^{\frac{\rho}{\rho-1}}	\alpha_1^{\frac{-1}{\rho-1}}	+	w_2^{\frac{\rho}{\rho-1}}	\alpha_2^{\frac{-1}{\rho-1}}\right)^{\frac{\rho-1}{\rho}}\end{equation}\tag{11}\]	Taking	the	natural	logarithm	of	both	sides	of	Equation	Equation11,	we	get:\[\begin{equation}\label{eq:log-cost-function}\ln(C)	=	\ln	\left(	\frac{Q}{A}	\right)	+	\frac{\rho-
1}{\rho}	\ln	\left(	w_1^{\frac{\rho}{\rho-1}}	\alpha_1^{\frac{-1}{\rho-1}}	+	w_2^{\frac{\rho}{\rho-1}}	\alpha_2^{\frac{-1}{\rho-1}}	\right)\end{equation}\tag{12}\]The	Taylor	expansion	of	\(\frac{\rho-1}{\rho}	\ln	\left(	w_1^{\frac{\rho}{\rho-1}}	\alpha_1^{\frac{-1}{\rho-1}}	+	w_2^{\frac{\rho}{\rho-1}}	\alpha_2^{\frac{-1}{\rho-1}}
\right)\)	around	\(\rho=0\)	is	22This	is	computed	in	Mathematica,	too.\[\begin{align}\label{eq:taylor-expansion-of-log-cost}&((\alpha_2-1)\ln\alpha_1-\alpha_2(\ln\alpha_2+\ln	w_1-\ln	w_2)+\ln	w_1)onumber\\&+\frac{1}{2}(\alpha_2-1)\alpha_2\rho(\ln	\alpha_1-\ln	\alpha_2-\ln	w_1+\ln	w_2)^2+O\left(\rho^2\right)\end{align}\tag{13}\]Omitting	\
(O\left(\rho	^2\right)\)	and	substituting	the	Taylor	expansion	into	Equation	Equation12,	we	have\[\begin{align}\ln	C	&=	-\ln	A	+	\ln	Q	onumber\\&+((\alpha_2-1)\ln\alpha_1-\alpha_2(\ln\alpha_2+\ln	w_1-\ln	w_2)+\ln	w_1)onumber\\&+\frac{1}{2}(\alpha_2-1)\alpha_2\rho(\ln	\alpha_1-\ln	\alpha_2-\ln	w_1+\ln	w_2)^2\label{eq:log-cost-
taylor}\end{align}\tag{14}\]which	clearly	is	a	function	of	\(\ln	Q\);	\(\ln	w_1\),	\(\ln	w_2\)	and	their	interaction	terms.We	can	therefore	reparameterize	Equation	Equation14	and	get	the	Translog	cost	function:\[\begin{align}	\label{eq:translog-cost}\ln	C	&=	a_0	+	a_1	\ln	Q	\\&+	b_{11}	\ln	w_1	+	b_{22}	\ln	w_2	+	b_{12}	\ln	w_1	\ln	w_2
onumber\end{align}\tag{15}\]Why	there	is	no	interaction	between	\(\ln	Q\)	and	\(\ln	w\)?This	is	NOT	an	error!	It	is	because	we	started	from	a	standard	CES	production	function,	which	doesnt	include	interaction	terms.A	more	general	form	of	translog	cost	function	includes	interaction	terms	\(\ln	Q	\ln	w\)	because	the	underlying	production	function	is
even	more	flexible	than	the	standard	CES	production	function.	This	is	the	beauty	of	translog.In	a	general	form,	the	translog	cost	function	\(\ln	C(Q,	W)\)	as	a	function	of	output	\(Q\)	and	a	vector	of	\(n\)	input	prices	\(W\)	is	represented	as\[\begin{align}\ln	C(Q,	W)	&=	\beta_0	+	\beta_1	\ln	Q	+	\frac{1}{2}	\beta_2	(\ln	Q)^2	\\&+	\sum_{i=1}^{n}
\gamma_i	\ln	W_i	+	\frac{1}{2}	\sum_{i=1}^{n}	\sum_{j=1}^{n}	\theta_{ij}	\ln	W_i	\ln	W_j	onumber	\\&+	\sum_{i=1}^{n}	\phi_i	\ln	Q	\ln	W_i	onumber\label{eq:translog-cost-general}\end{align}\tag{16}\]Note	that	here	it	includes	a	quadratic	term	for	\(\ln	Q\)	and	interactions	between	\(\ln	Q\)	and	\(\ln	W\).	As	a	result,	it	can	approximate	a	wide
range	of	very	complex	cost	functions	(hence	complex	underlying	production	function,	via	duality).	In	economic	theory,	a	cost	function	is	often	assumed	to	be	linearly	homogeneous	in	input	prices.	This	means	that	if	all	input	prices	\(W_i\)	are	scaled	by	a	constant	\(\lambda	>	0\),	the	total	cost	\(C\)	should	also	scale	by	the	same	constant	\(\lambda\).
Mathematically,	this	is	expressed	as:\[\begin{equation}C(Q,	\lambda	W)	=	\lambda	C(Q,	W)\end{equation}\]Linear	homogeneity	is	an	important	property	because	it	ensures	that	the	cost	function	is	consistent	with	the	idea	of	constant	returns	to	scale	in	prices.	If	we	take	the	total	differential	of	the	log	cost,	holding	output	constant,	we	have,\
[\begin{equation}d\ln	C	=	\sum_{i=1}^{n}	\gamma_i	d\ln	W_i+	\frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}	\theta_{ij}	\ln	W_j	d\ln	W_i	+	\sum_{i=1}^{n}\phi_i	\ln	Q	d\ln	W_i\end{equation}\]By	assumption,	all	input	prices	scale	by	the	same	factor	\(\lambda\)	so	that	\(d\ln	W_i\)	is	the	same	across	all	\(n\)	inputs.	Therefore,	we	can	factor	it	out,
which	gives,\[\begin{equation}d\ln	C	=	d\ln	\bar{W}	\sum_{i=1}^{n}	\gamma_i	+	d\ln	\bar{W}^2	\frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}	\theta_{ij}	+	d\ln	\bar{W}	\ln	Q	\sum_{i=1}^{n}\phi_i\end{equation}\]To	ensure	\(\frac{d\ln	C}{d\ln	\bar{W}}=1\)	hence	linear	homogeneity	in	the	translog	cost	function,	the	following	conditions	must
be	met:\[\begin{align}\sum_{i=1}^{n}	\gamma_i	&=	1	\\\sum_{j=1}^{n}	\theta_{ij}	&=	0	\quad	\text{for	all	}	i	\\\sum_{i=1}^{n}	\phi_{i}	&=	0\end{align}\]	Back	to	top
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