
	

https://muwuvab.godoxevez.com/420393097444363975658340324006112243064285?gogulagabadofanifijizofetilemenugigagejediruxirutozopazusonokajubu=soloduxixiganewapuwawatulinoregixafikafekavosorexiginaxosotuxupubososilavatenaxasodukopuwimitiwunexerilofopeburedisagexuzidajosazusuwudavererexawejukunobidewidutedunakifezujukokufinogizakalekejelewalam&utm_term=how+to+make+form+in+html+and+css&safajisitifavalegixidikavevevanelakokosokibile=pojekowubepikeniluweganoxomumapideviropevivezokuwexovobaposokapuparinaleradewarulibisorekanibinirovibupatekadurolufanubituna

Modern	HTML	FormWith	the	proliferation	of	free	services	in	exchange	for	personal	information,	a	modern	HTML	form	has	become	more	important	in	the	capture	of	email	addresses,	passwords,	usernames,	etc.	The	inability	to	offer	a	seamless	and	pleasant	experience	in	the	informational	exchange	might	cause	your	users	to	throw	up	their	hands	and
rethink	their	want	to	use	your	service.	In	addition,	today’s	web	is	leaps	and	bounds	better	looking	than	years	before.	With	more	and	more	website	builders	becoming	mainstream	and	offering	modern	themes	it’ll	be	harder	to	convince	users	that	your	product	is	exciting	if	your	HTML	form	is	bland	and	unthoughtful.	In	this	tutorial,	I’ll	show	you	how	you
can	go	from	this	…Simple	HTML	FormTo	this	…Mordern	HTML	FormPlan	Of	AttackThe	steps	for	this	tutorial	fall	into	three	categories:Create	HTML	SkeletonPosition	HTML	FormStyle	HTML	FormThankfully	forms	aren’t	all	that	hard	to	write	so	we	can	get	to	the	fun	stuff	(Styling	the	HTML	form)	quicker.	However,	there	are	a	couple	of	things	we
need	to	discuss	before	we	rush	off	to	do	our	styling.	Let’s	begin…To	start	off	we’ll	just	create	the	basic	structure	of	an	HTML	Document	A	Better	Form	Once	we	have	the	basic	structure	down	for	our	HTML	Document	lets	build	out	the	form	within	the	body	tag...	Sign	Up	First	name:

Last	name:

Favorite	Color:

Favorite	Food:

function	formSubmit(event)	{	event.preventDefault();	}...Nothing	too	interesting	here.	We’ve	created	a	top-level	container	named	“formContainer”	to	hold	our	form.	This	will	be	essential	for	step	two	when	we	try	positioning	the	form.	In	regards	to	our	form,	we	have	specified	that	when	we	click	the	submit	button	we	want	to	call	“formSubmit(event)”
with	the	event	that	triggered	the	function.	Within	the	function,	we	just	call	“event.preventDefault();”	so	that	if	we	accidentally	hit	the	submit	button	our	page	doesn’t	get	refreshed.	Just	a	minor	thing,	not	really	important	to	the	overall	purpose	of	this	article.Your	form	should	now	look	something	like	this	…Step	2:	Position	HTML	FormHere	is	the
portion	which	people	might	have	the	hardest	time	getting	their	form	to	look	just	right.	However,	a	lot	of	layout	issues/hacks	can	be	resolved	with	CSS	Flexbox	and	that’s	what	we’ll	be	using	today.We’ll	be	centering	the	form	both	vertically	and	horizontally.	This	is	easily	achievable	with	just	three	attributes:	“display:	flex”,	“justify-content:	center”,
“align-items:	center”.Our	first	attribute	“display:	flex”	signifies	that	we’ll	be	using	CSS	Flexbox.	The	next	one	“justify-content:	center”	horizontally	centers	the	element	within	our	form	container.	Lastly,	we	have	“align-items:	center”	which	vertically	centers	our	content.Thumbs	UpLet’s	actually	apply	this	to	our	code.	At	the	top	of	the	CSS	file	add	this
…body	{	display:	flex;	justify-content:	center;	align-items:	center;}You	might	notice	that	the	form	doesn’t	seem	to	be	quite	centered.	That’s	because	of	the	height	of	our	body	tag.	Let’s	fix	that	with	one	line	…body	{	.	.	.	height:	100vh;	}Cool.	Now	we	have	a	vertically	and	horizontally	centered	form.	The	next	thing	we’ll	do	is	start	tweaking	the	layout	of
our	form	container.Go	ahead	and	add	this	to	the	bottom	of	your	CSS	file	….formContainer	{	display:	flex;	justify-content:	center;	align-items:	center;}You	will	now	see	that	the	Sign	Up	header	is	to	the	left	of	our	form	instead	of	on	top.	This	is	actually	expected.	The	way	CSS	Flexbox	handles	its	elements	by	default	is	putting	each	child	element	in	a	row
type	direction.	We	can	change	this	behavior	with	the	“flex-direction:	column”	attribute.	Add	it	to	the	bottom	of	the	formContainer	class	like	so	….formContainer	{	display:	flex;	justify-content:	center;	align-items:	center;	flex-direction:	column;}Awesome	so	now	we	should	see	the	Sign	Up	header	at	the	top	of	our	form.With	that	addition,	we	have	a	final
product	that	looks	like	this	…Step	#3:	Style	HTML	FormStyling	A	SuitHere	is	the	real	focus	of	our	article.	Spicing	the	form	up	with	some	extra	CSS	styles.Because	we’ll	be	switching	the	font	color	to	white	let	us	change	our	background	color	first.A	really	good	way	to	spruce	up	your	form’s	page	is	to	have	a	compelling	high-quality	background	image.
We	can	achieve	this	with	just	linear	gradients	and	a	selection	of	complementary	colors.	For	the	color	selection,	I’ll	be	using	www.material-ui.com/style/color/I	generally	find	a	diagonal	gradient	to	be	best.	Go	ahead	and	drop	these	three	lines	in	our	body	classbody	{	.	.	.	background:	linear-gradient(to	top	left,	#4A148C,	#C51162);	background-repeat:
cover;	color:	white;}Because	minimalism	is	a	great	way	to	make	your	design	feel	modern	lets	get	rid	of	every	line	in	each	of	our	input	boxes	except	the	bottom	one,	creating	a	nice	white	underline.	Add	this	to	the	bottom	of	the	CSS	fileinput	{	margin-bottom:	5vh;	border-right:	none;	border-top:	none;	border-left:	none;	background-color:transparent;
outline:	none;	color:	white;	caret-color:	white;}And	because	we	don’t	want	any	wasted	space	lets	go	ahead	and	change	up	our	form	to	use	placeholder	text	for	the	inputs	titles	

This	is	good	but	we	still	need	to	style	the	placeholder	text	as	it	doesn’t	look	good	grayed	out.	Place	this	block	at	the	bottom	of	your	CSS	file.input[type=text]::placeholder	{	text-align:	center;	color:	white;	font-family:	'Roboto',	sans-serif;}Almost	ThereWe	are	almost	done.The	next	item	we	need	to	change	is	the	submit	button.	Add	this	to	the	bottom	of
your	CSS	fileinput[type=submit]	{	background:	rgba(255,255,255,.2);	width:	100%;	padding:	2vh;	border:	none;	cursor:	pointer;	border-radius:	4px	4px;}Adding	opacity	to	your	buttons	can	make	them	blend	in	more	to	the	background	yet	still	have	some	sort	of	separation.	We	also	add	in	a	change	to	the	buttons	borders.	Essentially	sanding	off	the
edges	to	make	it	a	smoother	design.Our	final	adjustment	is	to	make	sure	our	form	is	always	a	relative	size	to	the	screen.	Add	this	to	the	bottom	of	the	CSS	file	….formContainer	{	.	.	.	height:	80vh;	width:	20vw;}This	gives	us	an	upright	rectangle	which	suits	the	column	layout	we	specified	for	our	usage	of	CSS	Flexbox.Our	final	product	should	look	like
this	…Spongebob	Dusting	Off	HandsConclusionLike	stated	earlier,	forms	are	becoming	more	essential	as	we	transition	to	a	world	of	information	collection.	A	good	way	to	entice	your	users	is	to	make	sure	when	you	are	asking	them	for	their	personal	information	the	process	is	as	pleasant	and	frictionless	as	possible.	Creating	modern	beautiful	looking
forms	can	help	alleviate	any	reservations	a	person	might	have	about	forking	over	private	data.	You	could	go	so	far	as	to	inject	CSS	animations	into	your	form	if	you	wanted	too.	However,	with	this	tutorial,	you	should	now	at	least	have	an	understanding	of	what	goes	into	making	a	simple	modern	HTML	form.	In	web	development,	forms	are	essential
because	they	enable	users	to	engage	with	websites	by	providing	information	like	survey	answers,	feedback,	and	login	credentials.	A	well-designed	form	guarantees	smooth	data	gathering,	increases	accessibility,	and	improves	user	experience.In	this	blog,	we	will	cover:The	basics	of	using	HTML	to	create	forms	Various	kinds	of	form	input	fields.	Learn
MoreThe	best	ways	to	organize	formsUsing	CSS	to	style	forms	for	improved	usability.	Read	CSS	GuideImproving	the	user	experience	through	accessibility	and	form	validationYou	will	know	how	to	make	forms	for	your	website	that	are	both	aesthetically	pleasing	and	easy	to	use	by	the	end	of	this	tutorial.A	organized	area	of	a	website	where	users	may
enter	and	submit	data	is	called	an	HTML	form.	Typically,	a	form's	element	has	buttons,	labels,	selection	options,	and	many	input	fields.Data	is	transmitted	to	a	server	for	processing	when	a	user	submits	a	form,	typically	via	the	HTTP	GET	or	POST	protocols.Learn	more	about	HTML	Forms:	HTML	Form	TutorialA	simple	HTML	form	consists	of:A
element	that	acts	as	a	container	for	all	input	fieldsInput	fields	(such	as	text	boxes,	radio	buttons,	and	dropdowns)Labels	that	describe	each	input	fieldA	submit	button	to	send	the	data	to	a	server				Full	Name:								Email:								SubmitHTML	offers	various	input	elements	to	collect	user	data	efficiently.	Here	are	some	of	the	most	commonly	used	form
fields:Collects	single-line	text	input	(e.g.,	name,	username)Collects	an	email	address	and	ensures	proper	formatMasks	input	characters	for	secure	password	entryAllows	users	to	select	one	option	from	multiple	choicesAllows	users	to	select	multiple	optionsCollects	multi-line	text	input	(e.g.,	comments,	messages)Creates	a	dropdown	list	for	selecting	a
valueEach	input	field	should	be	paired	with	a	to	enhance	readability	and	accessibility.By	default,	HTML	forms	appear	plain	and	unstyled.	CSS	allows	us	to	enhance	their	appearance,	improving	readability	and	usability.Padding	and	Margins:	Improve	spacing	between	form	elements	for	better	readability.Borders	and	Backgrounds:	Enhance	input	field
visibility.Font	Styles:	Customize	text	appearance	for	labels	and	input	fields.Hover	and	Focus	Effects:	Highlight	fields	when	users	interact	with	them.Button	Styling:	Make	submit	buttons	more	noticeable.Example	CSS	for	Form	Styling												Contact	Form												body	{	background:	#a1c4fd;	font-family:	Arial,	sans-serif;	text-align:	center;	}								form	{
background:	white;	width:	300px;	margin:	auto;	padding:	15px;	border-radius:	10px;	box-shadow:	0	4px	8px	rgba(0,	0,	0,	0.1);	}								input,	textarea,	button	{	width:	100%;	margin:	8px	0;	padding:	10px;	border-radius:	5px;	border:	1px	solid	#ccc;	}								button	{	background:	#2c3e50;	color:	white;	border:	none;	cursor:	pointer;	}								button:hover	{
background:	#1a252f;	}																Contact	Us																																Send				See	CSS	Styling	in	Action:	CSS	Form	Styling	GuideMake	use	of	appropriate	spacing:	Organize	form	components	consistently	and	rationally.Draw	attention	to	the	targeted	fields:	To	show	the	user's	typing	location,	use	the	:focus	pseudo-class.Assure	responsiveness	on	mobile
devices:	Make	use	of	adaptable	layouts	to	suit	various	screen	sizes.Employ	contrasting	hues:	Make	it	easier	to	read	and	make	sure	that	everyone	can	access	it.Make	good	use	of	placeholders:	Labels	shouldn't	be	replaced	with	placeholder	text;	it	should	just	offer	suggestions.A	well-styled	form	not	only	looks	professional	but	also	enhances	the	overall
user	experience.Form	validation	ensures	that	users	enter	correct	and	complete	information	before	submitting	a	form.HTML	provides	built-in	validation	attributes	such	as	required,	minlength,	maxlength,	and	pattern	to	enforce	input	rules.Learn	more:	HTML	Form	ValidationServer-side	validation	is	crucial	for	security,	even	when	client-side	validation
enhances	user	experience.	All	submitted	data	should	be	validated	by	the	backend	prior	to	processing.When	consumers	enter	wrong	data,	errors	are	clearly	indicated.To	draw	attention	to	mistakes	and	successful	messages,	use	colors	and	icons.Usability	must	be	carefully	considered	while	creating	an	effective	form.	The	following	are	recommended
procedures	to	adhere	to:Don't	complicate:	Steer	clear	of	fields	that	are	superfluous	and	add	to	the	form's	length.Use	clear	labels:	To	help	the	user,	make	sure	that	each	input	field	has	a	relevant	label.Put	similar	fields	together:	Form	elements	can	be	logically	arranged	using	fieldsets	or	sections.Give	out	error	messages:	Provide	users	with	informative
error	messages	when	they	enter	inaccurate	or	missing	data.Make	sure	it's	accessible:	Use	ARIA	properties	and	semantic	HTML	to	create	forms	that	are	usable	by	people	with	disabilities.Make	your	site	mobile-friendly:	Make	sure	buttons	and	input	fields	are	the	right	size	for	touch	interactions.Forms	that	are	properly	designed	increase	completion
rates	and	lessen	user	annoyance,	which	results	in	improved	user	experience.Because	they	facilitate	user	interaction	and	data	entry,	forms	are	an	essential	component	of	web	development.	You	can	make	forms	that	are	both	aesthetically	pleasing	and	easy	to	use	by	properly	structuring	them	using	HTML	and	then	improving	their	design	with	CSS.	A
smooth	user	experience	on	all	devices	is	also	guaranteed	by	putting	accessibility	and	validation	into	practice.Whether	you're	creating	a	straightforward	contact	form	or	a	sophisticated	registration	system,	knowing	how	to	create	forms	that	work	can	enhance	both	functionality	and	usability.Want	to	become	an	expert	in	web	design,	HTML,	and	CSS?
Enroll	in	our	Web	Development	Course	now	to	discover	how	to	easily	create	beautiful,	interactive	websites.To	learn	more	about	the	course	and	begin	your	path	to	become	a	professional	web	developer,	click	here.	Creating	a	survey	form	is	a	great	way	to	understand	the	basics	of	web	development.	In	this	tutorial,	we	will	build	a	Survey	Form	that
allows	users	to	easily	submit	their	responses.	The	form	will	include	different	input	types	such	as	text	fields,	checkboxes,	and	radio	buttons,	all	designed	using	HTML	for	the	structure	and	CSS	for	styling.	What	We’re	Going	to	Create:Survey	Form	Interface:	We	will	design	a	simple	form	where	users	can	easily	input	their	responses	using	text	fields,
checkboxes,	and	radio	buttons.User-Friendly	Design:	The	form	will	be	visually	appealing	and	easy	to	navigate,	ensuring	a	smooth	user	experience.Data	Collection:	The	form	will	gather	user	responses	in	an	organized	way,	ready	for	submission.Responsive	Layout:	The	form	will	be	styled	to	adapt	to	different	screen	sizes,	ensuring	it	looks	great	on	both
desktop	and	mobile	devices.Project	PreviewBuild	a	Survey	Form	using	HTML	and	CSSSurvey	Form	-	HTML	and	CSS	CodeThis	survey	form	has	a	simple	and	flexible	design	that	works	well	on	any	device.	It	includes	different	input	options	like	text	fields,	checkboxes,	and	radio	buttons,	making	it	easy	to	fill	out.	The	form	also	looks	nice	and	has	smooth
effects,	making	it	easy	to	use.	index.html	GeeksforGeeks	Survey	Form	Name	Email	Age	Which	option	best	describes	you?	Student	Intern	Professional	Other	Would	you	recommend	GeeksforGeeks	to	a	friend?	Yes	No	Maybe	Languages	and	Frameworks	known	(Check	all	that	apply)	C	C++	C#	Java	Python	JavaScript	React	Angular	Django	Spring	Any
comments	or	suggestions	Submit	style.css	/*	Styling	the	Body	element	*/	body	{	background-color:	#05c46b;	font-family:	Verdana;	text-align:	center;	}	/*	Styling	the	Form	*/	form	{	background-color:	#fff;	max-width:	500px;	margin:	50px	auto;	padding:	30px	20px;	box-shadow:	2px	5px	10px	rgba(0,	0,	0,	0.5);	}	/*	Styling	.form-control	*/	.form-control	{
text-align:	left;	margin-bottom:	25px;	}	/*	Styling	.form-control	label	*/	.form-control	label	{	display:	block;	margin-bottom:	10px;	}	/*	Styling	.form-control	input,	select,	textarea	*/	.form-control	input,	.form-control	select,	.form-control	textarea	{	border:	1px	solid	#777;	border-radius:	2px;	font-family:	inherit;	padding:	10px;	display:	block;	width:	95%;
}	/*	Styling	Radio	button	and	Checkbox	*/	.form-control	input[type="radio"],	.form-control	input[type="checkbox"]	{	display:	inline-block;	width:	auto;	}	/*	Styling	Button	*/	button	{	background-color:	#05c46b;	border:	1px	solid	#777;	border-radius:	2px;	font-family:	inherit;	font-size:	21px;	display:	block;	width:	100%;	margin-top:	50px;	margin-
bottom:	20px;	}	Output:Build	a	Survey	Form	using	HTML	and	CSSIn	this	code:The	form	collects	user	details	like	name,	email,	age,	role,	feedback,	and	more.Uses	text,	email,	and	radio	button	inputs	for	user	data.Each	input	field	is	labeled	for	clarity.Allows	users	to	select	one	or	multiple	options	for	feedback.A	button	to	submit	the	survey.Body	Styling:
Sets	a	green	background	with	centered	text	and	a	simple	font.Form	Styling:	The	form	has	a	white	background,	padding,	and	a	shadow	for	a	clean,	modern	look.Form-Control:	Inputs,	selects,	and	text	areas	are	styled	for	consistency	and	usability.Button	Styling:	The	submit	button	has	a	green	background,	with	padding	and	full	width	for	easy
clicking.Responsive	Layout:	The	form	is	centered	and	adapts	to	different	screen	sizes	for	better	user	experience.ConclusionIn	this	article,	we	built	a	simple	and	attractive	survey	form	using	HTML	and	CSS.	The	form	collects	basic	information	like	name,	email,	and	feedback	using	different	types	of	input	fields	such	as	text	boxes,	radio	buttons,	and
checkboxes.	We	also	added	styling	to	make	the	form	look	clean	and	easy	to	use.	In	this	tutorial,	you	will	learn	how	to	create	a	registration	form	using	HTML	and	CSS.	Whether	you	are	a	complete	beginner	or	already	have	some	basic	knowledge	of	HTML	and	CSS,	this	guide	will	help	you	build	a	functional	and	stylish	registration	form.	When	it	comes	to
designing	websites,	one	of	the	most	essential	elements	is	a	registration	form.	It’s	the	first	step	users	take	to	sign	up	for	a	service	or	application.	A	registration	form	ensures	that	your	users	have	an	excellent	experience	on	any	device,	whether	they’re	on	a	phone,	tablet,	or	desktop.	In	this	guide,	we’ll	walk	you	through	the	steps	of	creating	a	registration
form	using	only	HTML	and	CSS.This	tutorial	will	provide	all	the	necessary	details	to	create	a	smooth	and	functional	registration	form.	If	you’re	looking	to	create	a	registration	form	using	HTML	and	CSS,	this	guide	is	exactly	what	you	need.	Even	if	you’re	a	complete	beginner	with	just	a	basic	understanding	of	HTML	and	CSS,	you	will	be	able	to	build
this	registration	form	by	following	the	steps	outlined	here.	A	registration	form	is	important	for	any	website	or	app.	It’s	where	users	fill	in	key	details	like	their	name,	email,	and	password.	This	is	the	first	step	to	creating	an	account	or	signing	up	for	a	service.	How	to	structure	the	clock	with	HTML	How	to	style	the	clock	using	CSS	Start	by	creating	a
new	file	called	(index.html).	Then,	copy	and	paste	the	HTML	code	provided	into	this	file.	Remember	to	save	it	with	the	(.html)	extension.	Registration	Form

Registration	Form

Full	Name:	Email:	Password:	Confirm	Password:	Register	Create	a	new	file	called	(style.css)	and	copy	the	provided	code	into	this	file.	Don’t	forget	to	save	it	with	the	(.css)	extension.	/*	Global	styles	*/	*	{	margin:	0;	padding:	0;	box-sizing:	border-box;	}	body	{	font-family:	'Arial',	sans-serif;	background:	linear-gradient(135deg,	#6e7dff,	#8e4ae6);
display:	flex;	justify-content:	center;	align-items:	center;	height:	100vh;	margin:	0;	}	.form-container	{	background-color:	#fff;	padding:	30px;	border-radius:	12px;	box-shadow:	0	8px	16px	rgba(0,	0,	0,	0.15);	width:	100%;	max-width:	400px;	text-align:	center;	}	h2	{	font-size:	24px;	margin-bottom:	20px;	color:	#333;	}	form	{	display:	flex;	flex-direction:
column;	}	label	{	font-size:	14px;	color:	#555;	margin-bottom:	8px;	text-align:	left;	}	input	{	padding:	12px;	margin-bottom:	15px;	border:	1px	solid	#ddd;	border-radius:	8px;	font-size:	14px;	outline:	none;	transition:	border	0.3s;	}	input:focus	{	border-color:	#6e7dff;	}	button	{	padding:	12px;	background-color:	#6e7dff;	color:	white;	border:	none;
border-radius:	8px;	font-size:	16px;	cursor:	pointer;	transition:	background-color	0.3s;	}	button:hover	{	background-color:	#5a66cc;	}	input::placeholder	{	color:	#aaa;	}	In	this	tutorial,	we’ve	shown	you	how	to	create	a	simple,	yet	effective	registration	form	using	HTML	and	CSS.	By	following	the	steps,	you	learned	how	to	structure	the	form	with
HTML	and	style	it	with	CSS	to	make	it	both	functional	and	visually	appealing.	Creating	forms	is	a	fundamental	skill	for	web	development,	and	with	the	knowledge	you’ve	gained	here,	you	can	build	various	types	of	forms	for	different	purposes,	such	as	login	forms,	contact	forms,	or	survey	forms.	The	techniques	used	in	this	tutorial	can	be	extended	and
customized	to	meet	your	specific	design	requirements,	helping	you	enhance	the	user	experience	on	your	website.	Whether	you’re	a	beginner	or	looking	to	brush	up	on	your	web	development	skills,	building	forms	is	a	great	way	to	practice	HTML	and	CSS.	Keep	experimenting	with	different	layouts,	colour,	and	styles	to	make	your	forms	more
interactive	and	user-friendly.	Happy	Coding!	The	look	of	an	HTML	form	can	be	greatly	improved	with	CSS:	Use	the	width	property	to	determine	the	width	of	the	input	field:	First	Name	Try	it	Yourself	»	The	example	above	applies	to	all	elements.	If	you	only	want	to	style	a	specific	input	type,	you	can	use	attribute	selectors:	input[type=text]	-	will	only
select	text	fields	input[type=password]	-	will	only	select	password	fields	input[type=number]	-	will	only	select	number	fields	etc..	Use	the	padding	property	to	add	space	inside	the	text	field.	Tip:	When	you	have	many	inputs	after	each	other,	you	might	also	want	to	add	some	margin,	to	add	more	space	outside	of	them:	First	Name	Last	Name
input[type=text]	{			width:	100%;		padding:	12px	20px;		margin:	8px	0;		box-sizing:	border-box;	}	Try	it	Yourself	»	Note	that	we	have	set	the	box-sizing	property	to	border-box.	This	makes	sure	that	the	padding	and	eventually	borders	are	included	in	the	total	width	and	height	of	the	elements.	Read	more	about	the	box-sizing	property	in	our	CSS	Box
Sizing	chapter.	Bordered	Inputs	Use	the	border	property	to	change	the	border	size	and	color,	and	use	the	border-radius	property	to	add	rounded	corners:	First	Name	If	you	only	want	a	bottom	border,	use	the	border-bottom	property:	First	Name	Colored	Inputs	Use	the	background-color	property	to	add	a	background	color	to	the	input,	and	the	color
property	to	change	the	text	color:	Focused	Inputs	By	default,	some	browsers	will	add	a	blue	outline	around	the	input	when	it	gets	focus	(clicked	on).	You	can	remove	this	behavior	by	adding	outline:	none;	to	the	input.	Use	the	:focus	selector	to	do	something	with	the	input	field	when	it	gets	focus:	Input	with	icon/image	If	you	want	an	icon	inside	the
input,	use	the	background-image	property	and	position	it	with	the	background-position	property.	Also	notice	that	we	add	a	large	left	padding	to	reserve	the	space	of	the	icon:	input[type=text]	{		background-color:	white;		background-image:	url('searchicon.png');		background-position:	10px	10px;			background-repeat:	no-repeat;		padding-left:	40px;	}
Try	it	Yourself	»	Animated	Search	Input	In	this	example	we	use	the	CSS	transition	property	to	animate	the	width	of	the	search	input	when	it	gets	focus.	You	will	learn	more	about	the	transition	property	later,	in	our	CSS	Transitions	chapter.	input[type=text]	{		transition:	width	0.4s	ease-in-out;}input[type=text]:focus	{			width:	100%;}	Try	it	Yourself	»
Styling	Textareas	Tip:	Use	the	resize	property	to	prevent	textareas	from	being	resized	(disable	the	"grabber"	in	the	bottom	right	corner):	Some	text...	textarea	{		width:	100%;		height:	150px;		padding:	12px	20px;		box-sizing:	border-box;		border:	2px	solid	#ccc;		border-radius:	4px;		background-color:	#f8f8f8;		resize:	none;	}	Try	it	Yourself	»	Styling
Select	Menus	select	{		width:	100%;		padding:	16px	20px;		border:	none;		border-radius:	4px;		background-color:	#f1f1f1;	}	Try	it	Yourself	»	Styling	Input	Buttons	input[type=button],	input[type=submit],	input[type=reset]	{		background-color:	#04AA6D;		border:	none;		color:	white;		padding:	16px	32px;		text-decoration:	none;		margin:	4px	2px;	
cursor:	pointer;	}/*	Tip:	use	width:	100%	for	full-width	buttons	*/	Try	it	Yourself	»	For	more	information	about	how	to	style	buttons	with	CSS,	read	our	CSS	Buttons	Tutorial.	Responsive	Form	Resize	the	browser	window	to	see	the	effect.	When	the	screen	is	less	than	600px	wide,	make	the	two	columns	stack	on	top	of	each	other	instead	of	next	to	each
other.	Advanced:	The	following	example	uses	media	queries	to	create	a	responsive	form.	You	will	learn	more	about	this	in	a	later	chapter.	Try	it	Yourself	»	Nearly	all	browsers	nowadays	support	CSS	and	many	other	applications	do,	too.	To	write	CSS,	you	don't	need	more	than	a	text	editor,	but	there	are	many	tools	available	that	make	it	even	easier.	Of
course,	all	software	has	bugs,	even	after	several	updates.	And	some	programs	are	further	ahead	implementing	the	latest	CSS	modules	than	others.	Various	sites	describe	bugs	and	work-arounds.	More	»	For	beginners,	Starting	with	HTML	+	CSS	teaches	how	to	create	a	style	sheet.	For	a	quick	introduction	to	CSS,	try	chapter	2	of	Lie	&	Bos	or	Dave
Raggett's	intro	to	CSS.	Or	see	examples	of	styling	XML	and	CSS	tips	&	tricks.	Another	page	also	has	some	books,	mailing	lists	and	similar	fora,	and	links	to	other	directories.	The	history	of	CSS	is	described	in	chapter	20	of	the	book	Cascading	Style	Sheets,	designing	for	the	Web,	by	Håkon	Wium	Lie	and	Bert	Bos	(2nd	ed.,	1999,	Addison	Wesley,	ISBN
0-201-59625-3)	More	»	CSS	inspired	‘quayjn’	to	write	the	song	‘CSS	is	OK’.	Site	navigation	When	the	first	CSS	specification	was	published,	all	of	CSS	was	contained	in	one	document	that	defined	CSS	Level	1.	CSS	Level	2	was	defined	also	by	a	single,	multi-chapter	document.	However	for	CSS	beyond	Level	2,	the	CSS	Working	Group	chose	to	adopt	a
modular	approach,	where	each	module	defines	a	part	of	CSS,	rather	than	to	define	a	single	monolithic	specification.	This	breaks	the	specification	into	more	manageable	chunks	and	allows	more	immediate,	incremental	improvement	to	CSS.	Since	different	CSS	modules	are	at	different	levels	of	stability,	the	CSS	Working	Group	has	chosen	to	publish
this	profile	to	define	the	current	scope	and	state	of	Cascading	Style	Sheets	as	of	2024.	Cascading	Style	Sheets	(CSS)	CSS	is	a	language	for	writing	style	sheets,	and	is	designed	to	describe	the	rendering	of	structured	documents	(such	as	HTML	and	XML)	on	a	variety	of	media.	CSS	is	used	to	describe	the	presentation	of	a	source	document,	and	usually
does	not	change	the	underlying	semantics	expressed	by	its	document	language.	Style	sheet	A	set	of	rules	that	specify	the	presentation	of	a	document.	Style	sheets	are	written	by	an	Author,	and	interpreted	by	a	User	Agent,	to	present	the	document	to	the	User.	Source	document	The	document	to	which	one	or	more	style	sheets	apply.	A	source
document’s	structure	and	semantics	are	encoded	using	a	document	language	(e.g.,	HTML,	XHTML,	or	SVG).	Author	An	author	is	a	person	who	writes	documents	and	associated	style	sheets.	An	authoring	tool	is	a	User	Agent	that	generates	style	sheets.	User	A	user	is	a	person	who	interacts	with	a	user	agent	to	view,	hear,	or	otherwise	use	the
document.	User	Agent	(UA)	A	user	agent	is	any	program	that	interprets	a	document	and	its	associated	style	sheets	on	behalf	of	a	user.	A	user	agent	may	display	a	document,	read	it	aloud,	cause	it	to	be	printed,	convert	it	to	another	format,	etc.	For	the	purposes	of	the	CSS	specifications,	a	User	Agent	is	one	that	supports	and	interprets	Cascading
Style	Sheets	as	defined	in	these	specifications.	This	section	is	non-normative.	In	the	W3C	Process,	a	Recommendation-track	document	passes	through	three	levels	of	stability,	summarized	below:	Working	Draft	(WD)	This	is	the	design	phase	of	a	W3C	spec.	The	WG	iterates	the	spec	in	response	to	internal	and	external	feedback.	The	first	official
Working	Draft	is	designated	the	“First	Public	Working	Draft”	(FPWD).	In	the	CSSWG,	publishing	FPWD	indicates	that	the	Working	Group	as	a	whole	has	agreed	to	work	on	the	module,	roughly	as	scoped	out	and	proposed	in	the	editor’s	draft.	The	transition	to	the	next	stage	is	sometimes	called	“Last	Call	Working	Draft”	(LCWD)	phase.	The	CSSWG
transitions	Working	Drafts	once	we	have	resolved	all	known	issues,	and	can	make	no	further	progress	without	feedback	from	building	tests	and	implementations.	This	“Last	Call	for	Comments”	sets	a	deadline	for	reporting	any	outstanding	issues,	and	requires	the	WG	to	specially	track	and	address	incoming	feedback.	The	comment-tracking	document
is	the	Disposition	of	Comments	(DoC).	It	is	submitted	along	with	an	updated	draft	for	the	Director’s	approval,	to	demonstrate	wide	review	and	acceptance.	Candidate	Recommendation	(CR)	This	is	the	testing	phase	of	a	W3C	spec.	Notably,	this	phase	is	about	using	tests	and	implementations	to	test	the	specification:	it	is	not	about	testing	the
implementations.	This	process	often	reveals	more	problems	with	the	spec,	and	so	a	Candidate	Recommendation	will	morph	over	time	in	response	to	implementation	and	testing	feedback,	though	usually	less	so	than	during	the	design	phase	(WD).	Demonstration	of	two	correct,	independent	implementations	of	each	feature	is	required	to	exit	CR,	so	in
this	phase	the	WG	builds	a	test	suite	and	generates	implementation	reports.	The	transition	to	the	next	stage	is	“Proposed	Recommendation”	(PR).	During	this	phase	the	W3C	Advisory	Committee	must	approve	the	transition	to	REC.	Recommendation	(REC)	This	is	the	completed	state	of	a	W3C	spec	and	represents	a	maintenance	phase.	At	this	point	the
WG	only	maintains	an	errata	document	and	occasionally	publishes	an	updated	edition	that	incorporates	the	errata	back	into	the	spec.	An	Editor’s	Draft	is	effectively	a	live	copy	of	the	editors’	own	working	copy.	It	may	or	may	not	reflect	Working	Group	consensus,	and	can	at	times	be	in	a	self-inconsistent	state.	(Because	the	publishing	process	at	W3C
is	time-consuming	and	onerous,	the	Editor’s	Draft	is	usually	the	best	(most	up-to-date)	reference	for	a	spec.	Efforts	are	currently	underway	to	reduce	the	friction	of	publishing,	so	that	official	drafts	will	be	regularly	up-to-date	and	Editor’s	Drafts	can	return	to	their	original	function	as	scratch	space.)	A	list	of	all	CSS	modules,	stable	and	in-progress,	and
their	statuses	can	be	found	at	the	CSS	Current	Work	page.	This	profile	includes	only	specifications	that	we	consider	stable	and	for	which	we	have	enough	implementation	experience	that	we	are	sure	of	that	stability.	Note:	This	is	not	intended	to	be	a	CSS	Desktop	Browser	Profile:	inclusion	in	this	profile	is	based	on	feature	stability	only	and	not	on
expected	use	or	Web	browser	adoption.	This	profile	defines	CSS	in	its	most	complete	form.	As	of	2024,	Cascading	Style	Sheets	(CSS)	is	defined	by	the	following	specifications.	CSS	Level	2,	latest	revision	(including	errata)	[CSS2]	This	defines	the	core	of	CSS,	parts	of	which	are	overridden	by	later	specifications.	We	recommend	in	particular	reading
Chapter	2,	which	introduces	some	of	the	basic	concepts	of	CSS	and	its	design	principles.	CSS	Syntax	Level	3	[CSS-SYNTAX-3]	Replaces	CSS2§4.1,	CSS2§4.2,	CSS2§4.4,	and	CSS2§G,	redefining	how	CSS	is	parsed.	CSS	Style	Attributes	[CSS-STYLE-ATTR]	Defines	how	CSS	declarations	can	be	embedded	in	markup	attributes.	Media	Queries	Level	3
[CSS3-MEDIAQUERIES]	Replaces	CSS2§7.3	and	expands	on	the	syntax	for	media-specific	styles.	CSS	Conditional	Rules	Level	3	[CSS-CONDITIONAL-3]	Extends	and	supersedes	CSS2§7.2,	updating	the	definition	of	@media	rules	to	allow	nesting	and	introducing	the	@supports	rule	for	feature-support	queries.	Selectors	Level	3	[SELECTORS-3]
Replaces	CSS2§5	and	CSS2§6.4.3,	defining	an	extended	range	of	selectors.	CSS	Namespaces	[CSS3-NAMESPACE]	Introduces	an	@namespace	rule	to	allow	namespace-prefixed	selectors.	CSS	Cascading	and	Inheritance	Level	4	[CSS-CASCADE-4]	Extends	and	supersedes	CSS2§1.4.3	and	CSS2§6,	as	well	as	[CSS-CASCADE-3].	Describes	how	to	collate
style	rules	and	assign	values	to	all	properties	on	all	elements.	By	way	of	cascading	and	inheritance,	values	are	propagated	for	all	properties	on	all	elements.	CSS	Values	and	Units	Level	3	[CSS-VALUES-3]	Extends	and	supersedes	CSS2§1.4.2.1,	CSS2§4.3,	and	CSS2§A.2.1–3,	defining	CSS’s	property	definition	syntax	and	expanding	its	set	of	units.	CSS
Custom	Properties	for	Cascading	Variables	Module	Level	1	[CSS-VARIABLES-1]	Introduces	cascading	variables	as	a	new	primitive	value	type	that	is	accepted	by	all	CSS	properties,	and	custom	properties	for	defining	them.	CSS	Box	Model	Level	3	[CSS-BOX-3]	Replaces	CSS2§8.1,	§8.2,	§8.3	(but	not	§8.3.1),	and	§8.4.	CSS	Color	Level	4	[CSS-COLOR-4]
Extends	and	supersedes	CSS2§4.3.6,	CSS2§14.1,	and	CSS2§18.2,	also	extends	and	supersedes	[CSS-COLOR-3],	introducing	an	extended	range	of	color	spaces	beyond	sRGB,	extended	color	values,	and	CSS	Object	Model	extensions	for	color.	Also	defines	the	opacity	property.	CSS	Backgrounds	and	Borders	Level	3	[CSS-BACKGROUNDS-3]	Extends	and
supersedes	CSS2§8.5	and	CSS2§14.2,	providing	more	control	of	backgrounds	and	borders,	including	layered	background	images,	image	borders,	and	drop	shadows.	CSS	Images	Level	3	[CSS-IMAGES-3]	Redefines	and	incorporates	the	external	2D	image	value	type,	introduces	native	2D	gradients,	and	adds	additional	controls	for	replaced	element
sizing	and	rendering.	CSS	Fonts	Level	3	[CSS-FONTS-3]	Extends	and	supersedes	CSS2§15	and	provides	more	control	over	font	choice	and	feature	selection.	CSS	Writing	Modes	Level	3	[CSS-WRITING-MODES-3]	Defines	CSS	support	for	various	international	writing	modes,	such	as	left-to-right	(e.g.	Latin	or	Indic),	right-to-left	(e.g.	Hebrew	or	Arabic),
bidirectional	(e.g.	mixed	Latin	and	Arabic)	and	vertical	(e.g.	Asian	scripts).	Replaces	and	extends	CSS2§8.6	and	§9.10.	CSS	Multi-column	Layout	Level	1	[CSS-MULTICOL-1]	Introduces	multi-column	flows	to	CSS	layout.	CSS	Flexible	Box	Module	Level	1	[CSS-FLEXBOX-1]	Introduces	a	flexible	linear	layout	model	for	CSS.	CSS	Basic	User	Interface
Module	Level	3	[CSS-UI-3]	Extends	and	supersedes	CSS2§18.1	and	CSS2§18.4,	defining	cursor,	outline,	and	several	new	CSS	features	that	also	enhance	the	user	interface.	CSS	Containment	Module	Level	1	[CSS-CONTAIN-1]	Introduces	the	contain	property,	which	enforces	the	independent	CSS	processing	of	an	element’s	subtree	in	order	to	enable
heavy	optimizations	by	user	agents	when	used	well.	CSS	Transforms	Level	1	[CSS-TRANSFORMS-1]	Introduces	coordinate-based	graphical	transformations	to	CSS.	CSS	Compositing	and	Blending	Level	1	[COMPOSITING]	Defines	the	compositing	and	blending	of	overlaid	content	and	introduces	features	to	control	their	modes.	CSS	Easing	Functions
Level	1	[CSS-EASING-1].	Describes	a	way	for	authors	to	define	a	transformation	that	controls	the	rate	of	change	of	some	value.	Applied	to	animations,	such	transformations	can	be	used	to	produce	animations	that	mimic	physical	phenomena	such	as	momentum	or	to	cause	the	animation	to	move	in	discrete	steps	producing	robot-like	movement.	CSS
Counter	Styles	Level	3	[CSS-COUNTER-STYLES-3]	Introduces	the	@counter-style	rule,	which	allows	authors	to	define	their	own	custom	counter	styles	for	use	with	CSS	list-marker	and	generated-content	counters	[CSS-LISTS-3].	It	also	predefines	a	set	of	common	counter	styles,	including	the	ones	present	in	CSS2	and	CSS2.1.	Note:	Although	we	don’t
anticipate	significant	changes	to	the	specifications	that	form	this	snapshot,	their	inclusion	does	not	mean	they	are	frozen.	The	Working	Group	will	continue	to	address	problems	as	they	are	found	in	these	specs.	Implementers	should	monitor	www-style	and/or	the	CSS	Working	Group	Blog	for	any	resulting	changes,	corrections,	or	clarifications.	The
following	specifications	are	considered	to	be	in	a	reliable	state,	meaning	they	have	largely	stable	implementations	and	specifications,	but	are	not	yet	at	the	Recommendation	level	due	to	minor	issues	or	the	need	for	additional	implementation	reports.	Media	Queries	Level	4	[MEDIAQUERIES-4]	Extends	and	supersedes	[CSS3-MEDIAQUERIES],
expanding	the	syntax,	deprecating	most	media	types,	and	introducing	new	media	features.	CSS	Scroll	Snap	Module	Level	1	[CSS-SCROLL-SNAP-1]	Contains	features	to	control	panning	and	scrolling	behavior	with	“snap	positions”.	CSS	Scrollbars	Styling	Module	Level	1	[CSS-SCROLLBARS-1]	Defines	properties	to	influence	the	visual	styling	of
scrollbars,	introducing	controls	for	their	color	and	width.	CSS	Grid	Layout	Module	Level	1	[CSS-GRID-1]	Introduces	a	two-dimensional	grid-based	layout	system,	optimized	for	user	interface	design.	In	the	grid	layout	model,	the	children	of	a	grid	container	can	be	positioned	into	arbitrary	slots	in	a	predefined	flexible	or	fixed-size	layout	grid.	CSS	Grid
Layout	Module	Level	2	[CSS-GRID-2]	Extends	and	supersedes	[CSS-GRID-1],	introducing	“subgrids”	for	managing	nested	markup	in	a	shared	grid	framework.	The	following	modules	have	completed	design	work,	and	are	fairly	stable,	but	have	not	received	much	testing	and	implementation	experience	yet.	We	hope	to	incorporate	them	into	the	official
definition	of	CSS	in	a	future	snapshot.	Media	Queries	Level	4	[MEDIAQUERIES-4]	Extends	and	supersedes	[CSS3-MEDIAQUERIES],	expanding	the	syntax,	deprecating	most	media	types,	and	introducing	new	media	features.	CSS	Display	Module	Level	3	[CSS-DISPLAY-3]	Replaces	CSS2§9.1.2,	§9.2.1	(but	not	§9.2.1.1),	§9.2.2	(but	not	§9.2.2.1),	§9.2.3,
and	§9.2.4	(and	lays	the	foundations	for	replacing	§9.7),	defining	how	the	CSS	formatting	box	tree	is	generated	from	the	document	element	tree	and	defining	the	display	property	that	controls	it.	CSS	Writing	Modes	Level	4	[CSS-WRITING-MODES-4]	Extends	and	supersedes	[CSS-WRITING-MODES-3],	adding	more	options	for	vertical	writing.	CSS
Fragmentation	Module	Level	3	[CSS-BREAK-3]	Describes	the	fragmentation	model	that	partitions	a	flow	into	pages,	columns,	or	regions	and	defines	properties	that	control	it.	Extends	and	supersedes	CSS2§13.3.	CSS	Box	Alignment	Module	Level	3	[CSS-ALIGN-3]	Introduces	properties	to	control	the	alignment	of	boxes	within	their	containers	in	the
various	CSS	box	layout	models:	block	layout,	table	layout,	flex	layout,	and	grid	layout.	CSS	Shapes	Module	Level	1	[CSS-SHAPES-1]	Extends	floats	(CSS2§9.5)	to	effect	non-rectangular	wrapping	shapes.	CSS	Text	Module	Level	3	[CSS-TEXT-3]	Extends	and	supersedes	CSS2§16	excepting	§16.3,	defining	properties	for	text	manipulation	and	specifying
their	processing	model.	It	covers	line	breaking,	justification	and	alignment,	white	space	handling,	and	text	transformation.	CSS	Text	Decoration	Module	Level	3	[CSS-TEXT-DECOR-3]	Extends	and	supersedes	CSS2§16.3,	providing	more	control	over	text	decoration	lines	and	adding	the	ability	to	specify	text	emphasis	marks	and	text	shadows.	CSS
Masking	Module	Level	1	[CSS-MASKING-1]	Replaces	CSS2§11.1.2	and	introduces	more	powerful	ways	of	clipping	and	masking	content.	CSS	Scroll	Snap	Module	Level	1	[CSS-SCROLL-SNAP-1]	Contains	features	to	control	panning	and	scrolling	behavior	with	“snap	positions”.	CSS	Speech	Module	Level	1	[CSS-SPEECH-1]	Replaces	CSS2§A,
overhauling	the	(non-normative)	speech	rendering	chapter.	CSS	View	Transitions	Module	Level	1	[CSS-VIEW-TRANSITIONS-1]	Defines	the	View	Transition	API,	along	with	associated	properties	and	pseudo-elements,	which	allows	developers	to	create	animated	visual	transitions	representing	changes	in	the	document	state.	Although	the	following
modules	have	been	widely	deployed	with	rough	interoperability,	their	details	are	not	fully	worked	out	or	sufficiently	well-specified	and	they	need	more	testing	and	bugfixing.	We	hope	to	incorporate	them	into	the	official	definition	of	CSS	in	a	future	snapshot.	CSS	Transitions	Level	1	[CSS-TRANSITIONS-1]	and	CSS	Animations	Level	1	[CSS-
ANIMATIONS-1].	Introduces	mechanisms	for	transitioning	the	computed	values	of	CSS	properties	over	time.	CSS	Will	Change	Level	1	[CSS-WILL-CHANGE-1]	Introduces	a	performance	hint	property	called	will-change.	Filter	Effects	Module	Level	1	[FILTER-EFFECTS-1]	Introduces	filter	effects	as	a	way	of	processing	an	element’s	rendering	before	it	is
displayed	in	the	document.	CSS	Font	Loading	Module	Level	3	[CSS-FONT-LOADING-3]	Introduces	events	and	interfaces	used	for	dynamically	loading	font	resources.	CSS	Box	Sizing	Level	3	[CSS-SIZING-3]	Overlays	and	extends	CSS§10.,	expanding	the	value	set	of	the	sizing	properties,	introducing	more	precise	sizing	terminology,	and	defining	with
more	precision	and	detail	various	automatic	sizing	concepts	only	vaguely	defined	in	CSS2.	CSS	Transforms	Level	2	[CSS-TRANSFORMS-2]	Builds	upon	[CSS-TRANSFORMS-1]	to	add	new	transform	functions	and	properties	for	three-dimensional	transforms,	and	convenience	functions	for	simple	transforms.	CSS	Lists	and	Counters	Module	Level	3
[CSS-LISTS-3]	Contains	CSS	features	related	to	list	counters:	styling	them,	positioning	them,	and	manipulating	their	value.	CSS	Logical	Properties	and	Values	Level	1	[CSS-LOGICAL-1]	Introduces	logical	properties	and	values	that	provide	the	author	with	the	ability	to	control	layout	through	logical,	rather	than	physical,	direction	and	dimension
mappings.	Also	defines	logical	properties	and	values	for	the	features	defined	in	[CSS2].	These	properties	are	writing-mode	relative	equivalents	of	their	corresponding	physical	properties.	CSS	Positioned	Layout	Module	Level	3	[CSS-POSITION-3]	Contains	defines	coordinate-based	positioning	and	offsetting	schemes	of	CSS:	relative	positioning,	sticky
positioning,	absolute	positioning,	and	fixed	positioning.	Resize	Observer	[RESIZE-OBSERVER-1]	This	specification	describes	an	API	for	observing	changes	to	element’s	principal	box’s	size.	Web	Animations	[WEB-ANIMATIONS-1]	Defines	a	model	for	synchronization	and	timing	of	changes	to	the	presentation	of	a	Web	page.	Also	defines	an	application
programming	interface	for	interacting	with	this	model.	CSS	Fonts	Module	Level	4	[CSS-FONTS-4]	Extends	and	supersedes	CSS	Fonts	3	and	provides	more	control	over	font	choice	and	feature	selection,	including	support	for	OpenType	variations.	CSS	Color	Adjustment	Module	Level	1	[CSS-COLOR-ADJUST-1]	This	module	introduces	a	model	and
controls	over	automatic	color	adjustment	by	the	user	agent	to	handle	user	preferences	and	device	output	optimizations.	CSS	Conditional	Rules	Module	Level	4	[CSS-CONDITIONAL-4]	Extends	CSS	Conditional	3	to	allow	testing	for	supported	selectors.	CSS	Cascading	and	Inheritance	Level	5	[CSS-CASCADE-5]	Extends	CSS	Cascade	4	to	add	cascade
layers.	Motion	Path	Module	Level	1	[MOTION-1]	This	module	allows	authors	to	position	any	graphical	object	and	animate	it	along	an	author	specified	path.	CSS	Scroll	Anchoring	Module	Level	1	[CSS-SCROLL-ANCHORING-1]	This	module	aims	to	minimize	content	shifts	by	locking	the	scroll	position	of	a	scroll	container	to	a	particular	anchor	element.
CSS	Object	Model	(CSSOM)	[CSSOM-1]	This	module	defines	APIs	for	parsing,	serializing,	and	manipulating	CSS,	Media	Queries,	and	Selectors.	CSS	Color	Module	Level	5	[CSS-COLOR-5]	Extends	CSS	Color	4	to	add	color	spaces	and	color	modification	functions.	Selectors	Level	4	[SELECTORS-4]	Extends	Selectors	Level	3	by	introducing	new	pseudo-
classes,	pseudo-elements,	and	combinators,	enhancing	the	ability	to	select	elements	based	on	more	complex	criteria	and	states.	Cascading	Style	Sheets	does	not	have	versions	in	the	traditional	sense;	instead	it	has	levels.	Each	level	of	CSS	builds	on	the	previous,	refining	definitions	and	adding	features.	The	feature	set	of	each	higher	level	is	a	superset
of	any	lower	level,	and	the	behavior	allowed	for	a	given	feature	in	a	higher	level	is	a	subset	of	that	allowed	in	the	lower	levels.	A	user	agent	conforming	to	a	higher	level	of	CSS	is	thus	also	conformant	to	all	lower	levels.	CSS	Level	1	The	CSS	Working	Group	considers	the	CSS1	specification	to	be	obsolete.	CSS	Level	1	is	defined	as	all	the	features
defined	in	the	CSS1	specification	(properties,	values,	at-rules,	etc),	but	using	the	syntax	and	definitions	in	the	CSS2.1	specification.	CSS	Style	Attributes	defines	its	inclusion	in	element-specific	style	attributes.	CSS	Level	2	Although	the	CSS2	specification	is	technically	a	W3C	Recommendation,	it	passed	into	the	Recommendation	stage	before	the	W3C
had	defined	the	Candidate	Recommendation	stage.	Over	time	implementation	experience	and	further	review	has	brought	to	light	many	problems	in	the	CSS2	specification,	so	instead	of	expanding	an	already	unwieldy	errata	list,	the	CSS	Working	Group	chose	to	define	CSS	Level	2	Revision	1	(CSS2.1).	In	case	of	any	conflict	between	the	two	specs
CSS2.1	contains	the	definitive	definition.	Once	CSS2.1	became	Candidate	Recommendation—effectively	though	not	officially	the	same	level	of	stability	as	CSS2—obsoleted	the	CSS2	Recommendation.	Features	in	CSS2	that	were	dropped	from	CSS2.1	should	be	considered	to	be	at	the	Candidate	Recommendation	stage,	but	note	that	many	of	these
have	been	or	will	be	pulled	into	a	CSS	Level	3	working	draft,	in	which	case	that	specification	will,	once	it	reaches	CR,	obsolete	the	definitions	in	CSS2.	The	CSS2.1	specification	defines	CSS	Level	2	and	the	CSS	Style	Attributes	specification	defines	its	inclusion	in	element-specific	style	attributes.	CSS	Level	3	CSS	Level	3	builds	on	CSS	Level	2	module
by	module,	using	the	CSS2.1	specification	as	its	core.	Each	module	adds	functionality	and/or	replaces	part	of	the	CSS2.1	specification.	The	CSS	Working	Group	intends	that	the	new	CSS	modules	will	not	contradict	the	CSS2.1	specification:	only	that	they	will	add	functionality	and	refine	definitions.	As	each	module	is	completed,	it	will	be	plugged	in	to
the	existing	system	of	CSS2.1	plus	previously-completed	modules.	From	this	level	on	modules	are	levelled	independently:	for	example	Selectors	Level	4	may	well	be	completed	before	CSS	Line	Module	Level	3.	Modules	with	no	CSS	Level	2	equivalent	start	at	Level	1;	modules	that	update	features	that	existed	in	CSS	Level	2	start	at	Level	3.	CSS	Level
4	and	beyond	There	is	no	CSS	Level	4.	Independent	modules	can	reach	level	4	or	beyond,	but	CSS	the	language	no	longer	has	levels.	("CSS	Level	3"	as	a	term	is	used	only	to	differentiate	it	from	the	previous	monolithic	versions.)	Not	all	implementations	will	implement	all	functionality	defined	in	CSS.	In	the	past,	the	Working	Group	published	a	few
Profiles,	which	were	meant	to	define	the	minimal	subset	of	CSS	that	various	classes	of	user	agents	were	expected	to	support.	This	effort	has	been	discontinued,	as	the	Working	Group	was	not	finding	it	effective	or	useful,	and	the	profiles	previously	defined	are	now	unmaintained.	Note:	Partial	implementations	of	CSS,	even	if	that	subset	is	an	official
profile,	must	follow	the	forward-compatible	parsing	rules	for	partial	implementations.	The	following	sections	define	several	conformance	requirements	for	implementing	CSS	responsibly,	in	a	way	that	promotes	interoperability	in	the	present	and	future.	So	that	authors	can	exploit	the	forward-compatible	parsing	rules	to	assign	fallback	values,	CSS
renderers	must	treat	as	invalid	(and	ignore	as	appropriate)	any	at-rules,	properties,	property	values,	keywords,	and	other	syntactic	constructs	for	which	they	have	no	usable	level	of	support.	In	particular,	user	agents	must	not	selectively	ignore	unsupported	property	values	and	honor	supported	values	in	a	single	multi-value	property	declaration:	if	any
value	is	considered	invalid	(as	unsupported	values	must	be),	CSS	requires	that	the	entire	declaration	be	ignored.	To	avoid	clashes	with	future	stable	CSS	features,	the	CSSWG	recommends	the	following	best	practices	for	the	implementation	of	unstable	features	and	proprietary	extensions	to	CSS:	Implementations	of	unstable	features	that	are
described	in	W3C	specifications	but	are	not	interoperable	should	not	be	released	broadly	for	general	use;	but	may	be	released	for	limited,	experimental	use	in	controlled	environments.	Why?	We	want	to	allow	both	authors	and	implementors	to	experiment	with	the	feature	and	give	feedback,	but	prevent	authors	from	relying	on	them	in	production
websites	and	thereby	accidentally	"locking	in"	(through	content	dependence)	certain	syntax	or	behavior	that	might	change	later.	For	example,	a	UA	could	release	an	unstable	features	for	experimentation	through	beta	or	other	testing-stage	builds;	behind	a	hidden	configuration	flag;	behind	a	switch	enabled	only	for	specific	testing	partners;	or	through
some	other	means	of	limiting	dependent	use.	A	CSS	feature	is	considered	unstable	until	its	specification	has	reached	the	Candidate	Recommendation	(CR)	stage	in	the	W3C	process.	In	exceptional	cases,	the	CSSWG	may	additionally,	by	an	officially-recorded	resolution,	add	pre-CR	features	to	the	set	that	are	considered	safe	to	release	for	broad	use.
See	§ 4	Safe	to	Release	pre-CR	Exceptions.	Note:	Vendors	should	consult	the	WG	explicitly	and	not	make	assumptions	on	this	point,	as	a	pre-CR	spec	that	hasn’t	changed	in	awhile	is	usually	more	out-of-date	than	stable.	To	avoid	clashes	with	future	CSS	features,	the	CSS2.1	specification	reserves	a	prefixed	syntax	[CSS2]	for	proprietary	and
experimental	extensions	to	CSS.	A	CSS	feature	is	a	proprietary	extension	if	it	is	meant	for	use	in	a	closed	environment	accessible	only	to	a	single	vendor’s	user	agent(s).	A	UA	should	support	such	proprietary	extensions	only	through	a	vendor-prefixed	syntax	and	not	expose	them	to	open	(multi-UA)	environments	such	as	the	World	Wide	Web.	Why?	The
prefixing	requirement	allows	shipping	specialized	features	in	closed	environments	without	conflicting	with	future	additions	to	standard	CSS.	The	restriction	on	exposure	to	open	systems	is	to	prevent	accidentally	causing	the	public	CSS	environment	to	depend	on	an	unstandardized	proprietary	extensions.	For	example,	Firefox’s	XUL-based	UI,	Apple’s
iTunes	UI,	and	Microsoft’s	Universal	Windows	Platform	app	use	extensions	to	CSS	implemented	by	their	respective	UAs.	So	long	as	these	UAs	do	not	allow	Web	content	to	access	these	features,	they	do	not	provide	an	opportunity	for	such	content	to	become	dependent	on	their	proprietary	extensions.	Even	if	a	feature	is	intended	to	eventually	be	used
in	the	Web,	if	it	hasn’t	yet	been	standardized	it	should	still	not	be	exposed	to	the	Web.	If	a	feature	is	unstable	(i.e.	the	spec	has	not	yet	stabilized),	but	at	least	three	UAs	implement	the	feature	(or	a	UA	has	broken	the	other	rules	and	shipped	for	broad	use	an	unstable	or	otherwise	non-standard	feature	in	a	production	release),	and	the	implementations
have	rough	interoperability,	and	the	CSS	Working	Group	has	recorded	consensus	that	this	feature	should	exist	and	be	released,	implementers	may	ship	that	feature	unprefixed	in	broad-release	builds.	Rough	interoperability	is	satisfied	by	a	subjective	judgment	that	even	though	there	may	be	differences,	the	implementations	are	sufficiently	similar	to
be	used	in	production	websites	for	a	substantial	number	of	use	cases.	Note	that	the	CSSWG	must	still	be	consulted	to	ensure	coordination	across	vendors	and	to	ensure	coherency	review	by	the	CSS	experts	from	each	vendor.	Note	also	that	rough	interoperability	still	usually	means	painful	lack	of	interop	in	edge	(or	not-so-edge)	cases,	particularly
because	details	have	not	been	ironed	out	through	the	standards	review	process.	Why?	If	a	feature	is	sufficiently	popular	that	three	or	more	browsers	have	implemented	it	before	it’s	finished	standardization,	this	clause	allows	releasing	the	pressure	to	ship.	Also,	if	a	feature	has	already	escaped	into	the	wild	and	sites	have	started	depending	on	it,
pretending	it’s	still	“experimental”	doesn’t	help	anyone.	Allowing	others	to	ship	unprefixed	recognizes	that	the	feature	is	now	de	facto	standardized	and	encourages	authors	to	write	cross-platform	code.	When	exposing	such	a	standards-track	unstable	feature	to	the	Web	in	a	production	release,	implementations	should	support	both	vendor-prefixed	and
unprefixed	syntaxes	for	the	feature.	Once	the	feature	has	stabilized	and	the	implementation	is	updated	to	match	interoperable	behavior,	support	for	the	vendor-prefixed	syntax	should	be	removed.	Why?	This	is	recommended	so	that	authors	can	use	the	unprefixed	syntax	to	target	all	implementations,	but	when	necessary,	can	target	specific
implementations	to	work	around	incompatibilities	among	implementations	as	they	get	ironed	out	through	the	standards/bugfixing	process.	The	lack	of	a	phase	where	only	the	prefixed	syntax	is	supported	greatly	reduces	the	risk	of	stylesheets	being	written	with	only	the	vendor-prefixed	syntax.	This	in	turn	allows	UA	vendors	to	retire	their	prefixed
syntax	once	the	feature	is	stable,	with	a	lower	risk	of	breaking	existing	content.	It	also	reduces	the	need	occasionally	felt	by	some	vendors	to	support	a	feature	with	the	prefix	of	another	vendor,	due	to	content	depending	on	that	syntax.	Anyone	promoting	unstable	features	to	authors	should	document	them	using	their	standard	unprefixed	syntax,	and
avoid	encouraging	the	use	of	the	vendor-prefixed	syntax	for	any	purpose	other	than	working	around	implementation	differences.	In	order	to	preserve	the	open	nature	of	CSS	as	a	technology,	vendors	should	make	it	possible	for	other	implementors	to	freely	implement	any	features	that	they	do	ship.	To	this	end,	they	should	provide	spec-editing	and

testing	resources	to	complete	standardization	of	such	features,	and	avoid	other	obstacles	(e.g.,	platform	dependency,	licensing	restrictions)	to	their	competitors	shipping	the	feature.	Once	a	specification	reaches	the	Candidate	Recommendation	stage,	implementers	should	release	an	unprefixed	implementation	of	any	CR-level	feature	they	can
demonstrate	to	be	correctly	implemented	according	to	spec,	and	should	avoid	exposing	a	prefixed	variant	of	that	feature.	To	establish	and	maintain	the	interoperability	of	CSS	across	implementations,	the	CSS	Working	Group	requests	that	non-experimental	CSS	renderers	submit	an	implementation	report	(and,	if	necessary,	the	testcases	used	for	that
implementation	report)	to	the	W3C	before	releasing	an	unprefixed	implementation	of	any	CSS	features.	Testcases	submitted	to	W3C	are	subject	to	review	and	correction	by	the	CSS	Working	Group.	Further	information	on	submitting	testcases	and	implementation	reports	can	be	found	from	on	the	CSS	Working	Group’s	website	at	.	Questions	should	be
directed	to	the	public-css-testsuite@w3.org	mailing	list.	The	following	features	have	been	explicitly	and	proactively	cleared	by	the	CSS	Working	Group	for	broad	release	prior	to	the	spec	reaching	Candidate	Recommendation.	See	§ 3.2.1	Experimentation	and	Unstable	Features.	The	following	features	have	been	explicitly	and	retroactively	cleared	by
the	CSS	Working	Group	for	broad	release	prior	to	the	spec	reaching	Candidate	Recommendation:	Everything	in	CSS	Animations	Level	1	and	CSS	Transitions	Level	1.	These	sections	are	non-normative.	=	~=	1st	2d	matrix	2nd	3rd	4th	absolute	length	absolute	length	unit	absolutely	positioned	element	abstract	dimensions	:active	activeborder
activecaption	active	duration	active	(pseudo-class)	actual	value	in	css-cascade-4	in	css21	additive	tuple	adjoining	margins	advance	measure	:after	after	after-change	style	aliceblue	alignment	baseline	alignment	container	alignment	context	alignment	subject	'all'	media	group	alphabetic	baseline	ambiguous	image	url	an+b	ancestor	anchor	anchor	unit
animation	origin	animation-tainted	anonymous	in	css-display-3,	for	CSS	in	css21	anonymous	box	anonymous	inline	boxes	antiquewhite	apply	to	appworkspace	aqua	aquamarine	are	a	valid	escape	aspect	value	atomic	inline	atomic	inline	box	atomic	inline-level	box	at-rule	attr()	attribute	'audio'	media	group	auditory	icon	augmented	grid	aural	box	model
author	authoring	tool	author	origin	author-origin	author	presentational	hint	origin	author	style	sheet	automatic	column	position	automatic	grid	position	automatic	numbering	automatic	placement	automatic	position	automatic	row	position	auto-placement	auto-placement	cursor	available	font	faces	available	grid	space	avoid	break	values	axis-lock	axis
value	azure	backdrop	background	background	color	background	image	background	image	layer	background	painting	area	background	positioning	area	backslash	escapes	baseline	baseline	alignment	baseline	alignment	preference	baseline	content-alignment	baseline	self-alignment	baseline	set	baseline-sharing	group	baseline	table	base	size	bearing
angle	:before	before	before-change	style	before	flag	beige	bfc	bidi	formatting	characters	bidi-isolate	bidi-isolated	bidi	isolation	bidi	paragraph	bidirectionality	bidirectionality	(bidi)	bi-orientational	bi-orientational	transform	bisque	'bitmap'	media	group	black	blanchedalmond	()-block	[]-block	block	in	css-display-3	in	css21	{}-block	block	at-rule	block
axis	block-axis	block	box	in	css-display-3	in	css21	block	container	block	container	box	in	css-display-3	in	css21	block	dimension	block	end	block-end	block	flow	direction	block	formatting	context	block	formatting	context	root	blockification	blockify	block	layout	block-level	block-level	box	in	css-display-3	in	css21	block-level	content	block-level	element
block	scripts	block	size	block-size	block	start	block-start	blue	blueviolet	blur	radius	boolean	context	border	box	border	color	border	edge	border	image	border	image	area	border	image	region	border::of	a	box	border	radius	border	style	border	width	bottom	box	box	alignment	properties	box::border	box::content	box::content	height	box::content	width
box-corner	box	fragment	box::margin	box::overflow	box::padding	box	tree	break	brown	burlywood	buttonface	buttonhighlight	buttonshadow	buttontext	cadetblue	cancel	canonical	unit	canvas	canvas	background	canvas	surface	captiontext	captures	snap	positions	cascade	in	css-cascade-4	in	css21	cascade-dependent	keyword	cascaded	independently
cascaded	value	cascade	origin	central	baseline	character	character	encoding	character	map	"@charset"	chartreuse	check	if	three	code	points	would	start	an	ident	sequence	check	if	three	code	points	would	start	a	number	check	if	three	code	points	would	start	a	unicode-range	check	if	two	code	points	are	a	valid	escape	child	child	combinator	child
selector	chinese	chocolate	circled-lower-latin	clamp	a	grid	area	clearance.	clipping	path	clipping	region	in	css-masking-1	in	css21	closest-side	clustered	scripts	collapse	collapsed	collapsed	flex	item	collapsed	grid	track	collapsed	gutter	collapsed	track	collapse	through	collapsible	white	space	collapsing	margin	color	color	stop	color	stop	list	color
transition	hint	column	box	column	break	column	gap	column	height	column	rule	column	width	combinator	combinators	combined	duration	compatible	baseline	alignment	preferences	compatible	units	complete	completed	transition	component	value	composite	face	computed	computed	track	list	computed	value	in	css-cascade-4	in	css21	concrete	object
size	conditional	group	rule	conditional	import	conditionally	hang	conformance	consecutive	constraint	rectangle	consume	a	block	consume	a	block's	contents	consume	a	component	value	consume	a	declaration	consume	a	function	consume	a	list	of	component	values	consume	a	list	of	declarations	consume	a	list	of	rules	consume	an	at-rule	consume	an
escaped	code	point	consume	an	ident-like	token	consume	an	ident	sequence	consume	a	number	consume	a	numeric	token	consume	a	qualified	rule	consume	a	simple	block	consume	a	string	token	consume	a	style	block's	contents	consume	a	stylesheet's	contents	consume	a	token	consume	a	unicode-range	token	consume	a	url	token	consume
comments	consume	the	next	input	token	consume	the	remnants	of	a	bad	declaration	consume	the	remnants	of	a	bad	url	consume	the	value	of	a	unicode-range	descriptor	contain	constraint	containing	block	in	css-display-3	in	css21	containing	block	chain	containing	block	for	all	descendants	containing	block::initial	containment	content	content-based
minimum	size	in	css-flexbox-1	in	css-grid-1	content	box	content	distribution	content-distribution	content-distribution	properties	content	edge	content	language	content::of	a	box	content::rendered	content	size	suggestion	in	css-flexbox-1	in	css-grid-1	content	writing	system	continuous	media	'continuous'	media	group	convert	a	string	to	a	number
coordinated	self-alignment	preference	coral	cornflowerblue	cornsilk	counter()	counters	counter	style	counter	symbol	cover	constraint	crimson	cross	axis	cross-axis	cross-axis	baseline	set	cross	dimension	cross-end	cross	size	cross-size	cross	size	property	cross-start	css	bracketed	range	notation	css-connected	css	feature	queries	cssfontfacerule
cssfontfeaturevaluesrule	css	ident	css	identifier	css	ident	sequence	css	qualified	name	css	value	definition	syntax	css-wide	keywords	cubic	bézier	easing	function	currentcolor	current	input	code	point	current	input	token	current	transformation	matrix	current	value	cursive	cursive	script	custom	property	cyan	darkblue	darkcyan	darkgoldenrod
darkgray	darkgreen	darkgrey	darkkhaki	darkmagenta	darkolivegreen	darkorange	darkorchid	darkred	darksalmon	darkseagreen	darkslateblue	darkslategray	darkslategrey	darkturquoise	darkviolet	declaration	in	css-syntax-3,	for	CSS	in	css21	declaration	block	declared	declared	value	decode	bytes	decorating	box	deeppink	deepskyblue	default	face
default	namespace	default	object	size	default	sizing	algorithm	default	style	sheet	definite	definite	column	position	definite	column	span	definite	grid	position	definite	grid	span	definite	position	definite	row	position	definite	row	span	definite	size	definite	span	descendant	descendant-selectors	descriptor	descriptor	declarations	destination	determine	the
fallback	encoding	device	pixel	dice	digit	dimension	dimgray	dimgrey	directional	embedding	directional	override	discard	a	mark	discard	a	token	discard	whitespace	display	type	distributed	alignment	distribute	extra	space	document	in	css-speech-1	in	css-style-attr	document	language	document	order	document	tree	document	white	space	document
white	space	characters	dodgerblue	dominant	baseline	easing	function	effective	character	map	element	in	css-display-3,	for	CSS	in	css21	element::following	element::preceding	element	tree	emoji	presentation	participating	code	points	empty	in	css-syntax-3,	for	token	stream	in	css21	em	(unit)	encapsulation	contexts	end	ending	point	ending	shape
ending	token	endmost	end	time	end	value	environment	encoding	eof	code	point	escaping	establish	an	independent	formatting	context	establish	an	orthogonal	flow	established	an	independent	formatting	context	establishes	an	independent	formatting	context	establishing	an	independent	formatting	context	exact	matching	expanded	name	explicit	grid
explicit	grid	column	explicit	grid	properties	explicit	grid	row	explicit	grid	track	explicitly-assigned	line	name	ex	(unit)	fallback	alignment	false	in	the	negative	range	fantasy	farthest-side	fetch	a	font	fetch	an	@import	fictional	tag	sequence	filter	code	points	filtered	code	points	filter	primitive	filter	primitive	attributes	filter	primitive	subregion	filter
primitive	tree	filter	region	find	the	matching	font	faces	fire	a	font	load	event	firebrick	:first	first	available	font	first-baseline	alignment	first-baseline	content-alignment	first	baselines	first-baseline	self-alignment	first	baseline	set	:first-child	first-child	first	cross-axis	baseline	set	first	formatted	line	:first-letter	first-letter	:first-line	first-line	first	main-axis
baseline	set	first	symbol	value	fixed	sizing	function	flex	base	size	flex	basis	flex	container	flex	direction	flex	factor	flex	factor	sum	flex	formatting	context	flex	fraction	flex	grow	factor	flexible	flexible	length	in	css-flexbox-1	in	css-grid-1	flexible	sizing	function	flexible	tracks	flex	item	flex	layout	flex-level	flex	line	flex	shrink	factor	float	area	float	rules
floralwhite	flow	layout	flow	of	an	element	flow-relative	flow-relative	direction	:focus	focus	focus	(pseudo-class)	following	element	font	block	period	font	download	timer	font	failure	period	font	feature	value	declaration	font-feature-value-type	font-relative	lengths	font	source	font	specific	font-stretch	font	swap	period	footnote	forced	break	forced	break
values	forced	line	break	forced	paragraph	break	forestgreen	formatting	context	in	css-display-3	in	css21	formatting	structure	forward-compatible	parsing	fragment	fragmentainer	fragmentation	fragmentation	break	fragmentation	container	fragmentation	context	fragmentation	direction	fragmentation	root	fragmented	flow	free	space	fuchsia	full-size
full-size	kana	full-width	fully	inflexible	function	functional	notation	gainsboro	generate	a	counter	generate	a	counter	representation	generate	baselines	generated	content	ghostwhite	go	gold	goldenrod	gradient-average-color	gradient	box	gradient	center	gradient	function	gradient	line	grapheme	cluster	gray	graytext	green	greenyellow	grey	grid	grid
area	grid	cell	grid	column	grid	column	line	grid	container	grid	formatting	context	grid	item	grid	item	placement	algorithm	grid	layout	grid	layout	algorithm	grid-level	grid	line	'grid'	media	group	grid-modified	document	order	grid	order	grid	placement	grid-placement	property	grid	position	grid	row	grid	row	line	grid	sizing	algorithm	grid	span	grid
track	growth	limit	guaranteed-invalid	value	gutter	half-width	hang	hanging	glyph	height	hex	digit	highlight	highlighttext	honeydew	horizontal	axis	horizontal	block	flow	horizontal	dimension	horizontal	offset	horizontal-only	horizontal	script	horizontal	typographic	mode	horizontal	writing	mode	hotpink	:hover	hover	(pseudo-class)	hyphenate
hyphenation	hyphenation	opportunity	hyphen-separated	matching	hypothetical	cross	size	hypothetical	fr	size	hypothetical	main	size	ident	ident	code	point	identifier	in	css-values-3,	for	CSS	in	css21	identity	transform	function	ident	sequence	ident-start	code	point	ignore	ignored	illegal	implicit	grid	implicit	grid	column	implicit	grid	lines	implicit	grid
properties	implicit	grid	row	implicit	grid	track	implicitly-assigned	line	name	implicitly-named	area	@import	important	import	conditions	inactiveborder	inactivecaption	inactivecaptiontext	indefinite	indefinite	size	independent	formatting	context	index	indianred	indigo	infinitely	growable	in	flow	in-flow	in	css-display-3	in	css21	infobackground	infotext
inherit	in	css-cascade-4	in	css-cascade-4,	for	CSS	in	css21	inheritance	in	css-cascade-4	in	css-cascade-4,	for	CSS	inherited	property	inherited	value	initial	containing	block	in	css-display-3	in	css21	initial	free	space	initial	representation	for	the	counter	value	initial	value	in	css-cascade-4	in	css21	inline	in	css-display-3	in	css21	inline	axis	inline-axis	inline
base	direction	inline	block	inline-block	inline	block	box	inline	box	in	css-display-3	in	css21	inline	dimension	inline	end	inline-end	inline	formatting	context	inline-level	inline-level	box	in	css-display-3	in	css21	inline-level	content	inline-level	element	inline	size	inline-size	inline	start	inline-start	inlinification	inlinify	inner	box-shadow	inner	display	type
inner	edge	input	progress	value	input	stream	installed	font	fallback	integer	intended	direction	intended	direction	and	end	position	intended	end	position	'interactive	media	group	internal	ruby	box	internal	ruby	element	internal	table	box	in	css-display-3	in	css21	internal	table	element	in	css-display-3	in	css21	interpreter	in	css-namespaces-3	in	css-
style-attr	intrinsic	dimensions	intrinsic	sizing	function	invalid	invalid	at	computed-value	time	invalid	image	invalid	rule	error	invisible	isolated	sequence	isolation	iteration	order	ivory	japanese	justification	opportunity	keyword	khaki	known	korean	:lang	lang	(pseudo-class)	last-baseline	alignment	last-baseline	content-alignment	last	baselines	last-
baseline	self-alignment	last	baseline	set	last	cross-axis	baseline	set	last	main-axis	baseline	set	lavender	lavenderblush	lawngreen	laying	out	in-place	layout	containment	layout	containment	box	layout-internal	:left	left	leftover	space	legacy	name	alias	legacy	shorthand	legacy	value	alias	lemonchiffon	letter	in	css-syntax-3	in	css-text-3	lightblue	lightcoral
lightcyan	lightgoldenrodyellow	lightgray	lightgreen	lightgrey	lightpink	lightsalmon	lightseagreen	lightskyblue	lightslategray	lightslategrey	light	source	lightsteelblue	lightyellow	lime	limegreen	limited	max-content	contribution	limited	min-content	contribution	linear	easing	function	linear	timing	function	line	box	line	break	in	css-break-3	in	css-text-3
line	breaking	line	breaking	process	line-left	linen	line	name	line	name	set	line	orientation	line-over	line-relative	line-relative	direction	line-right	line-under	:link	link	(pseudo-class)	list-item	list	properties	loading	image	local	coordinate	system	local	url	flag	logical	height	logical	width	longhand	longhand	property	lowercase	letter	magenta	main	axis
main-axis	main-axis	baseline	set	main	dimension	main-end	main	size	main-size	main	size	property	main-start	margin	box	margin	edge	margin::of	a	box	mark	marked	indexes	maroon	mask	border	image	mask	border	image	area	mask	image	mask	layer	image	mask	painting	area	mask-position	mask	positioning	area	mask-size	match	matching	transition
delay	matching	transition	duration	matching	transition-property	value	matching	transition	timing	function	max	cross	size	max	cross	size	property	maximum	allowed	code	point	max	inner	height	max	inner	width	max	main	size	max	main	size	property	max	track	sizing	function	may	media	media	condition	media-dependent	import	media	feature	media
group	media	query	media	query	list	media	query	modifier	media	type	mediumaquamarine	mediumblue	mediumorchid	mediumpurple	mediumseagreen	mediumslateblue	mediumspringgreen	mediumturquoise	mediumvioletred	menu	menutext	message	entity	midnightblue	min	cross	size	min	cross	size	property	minimum	contribution	min	inner	height
min	inner	width	min	main	size	min	main	size	property	mintcream	min	track	sizing	function	mistyrose	moccasin	monolithic	monospace	multicol	container	multi-col	line	multicol	line	multi-column	container	multi-column	formatting	context	multi-column	layout	multi-column	line	multi-column	spanner	multi-column	spanning	element	multi-line	flex
container	multiple	declarations	multiply	must	must	not	named	cell	token	named	grid	area	namespace	prefix	name-start	code	point	natural	aspect	ratio	natural	dimension	natural	end-point	natural	height	natural	size	natural	width	navajowhite	navy	nearest	neighbor	newline	next	input	code	point	next	input	token	next-sibling	combinator	next	token	non-
ascii	code	point	non-ascii	ident	code	point	'none'::as	display	value	non-overridable	counter-style	names	non-printable	code	point	non-replaced	non-replaced	element	normal	normalize	into	a	token	stream	null	cell	token	number	numeric	data	types	objects	object	size	negotiation	occupied	oldlace	olive	olivedrab	opacity	operating	coordinate	space	optimal
viewing	region	optional	orange	orangered	orchid	order-modified	document	order	in	css-display-3	in	css-flexbox-1	orthogonal	orthogonal	flow	other	space	separators	outer	box-shadow	outer	display	type	outer	edge	outline	out	of	flow	in	css-display-3	in	css21	out-of-flow	output	of	the	cascade	output	progress	value	over	overflow	overflow	alignment
overflow	columns	padding	box	padding	edge	padding::of	a	box	@page	page	area	page	box	page	break	page-context	paged	media	'paged'	media	group	page	selector	pagination	paint	containment	paint	containment	box	palegoldenrod	palegreen	paleturquoise	palevioletred	papayawhip	parent	parent	box	parse	parse	a	block's	contents	parse	a	comma-
separated	list	according	to	a	css	grammar	parse	a	comma-separated	list	of	component	values	parse	a	component	value	parse	a	css	stylesheet	parse	a	declaration	parse	a	list	parse	a	list	of	component	values	parse	a	list	of	declarations	parse	a	list	of	rules	parse	a	rule	parse	a	style	block's	contents	parse	a	stylesheet	parse	a	stylesheet's	contents	parse
error	parse	something	according	to	a	css	grammar	parsing	a	list	participates	in	baseline	alignment	pass	through	filter	peachpuff	pending	on	the	environment	pending-substitution	value	percentage	peru	physical	physical	bottom	physical	dimensions	physical	direction	physical	left	physical	right	physical	top	physical	unit	pink	pixel	pixel	unit	plum
positional	alignment	positioned	element/box	positioning	scheme	post-multiplied	post-multiply	powderblue	preceding	element	pre-multiplied	pre-multiply	preserved	tokens	preserved	white	space	primary	filter	primitive	tree	principal	block-level	box	principal	box	principal	writing	mode	process	propagate	propagation	proper	table	child	proper	table	row
parent	property	in	css-cascade-4,	for	CSS	in	css21	property	declarations	pseudo-classes	pseudo-classes:::active	pseudo-classes:::focus	pseudo-classes:::hover	pseudo-classes:::lang	pseudo-classes:::link	pseudo-classes:::visited	pseudo-class:::first	pseudo-class:::left	pseudo-class:::right	pseudo-elements	pseudo-elements:::after	pseudo-elements:::before
pseudo-elements:::first-letter	pseudo-elements:::first-line	purple	quad	width	qualified	rule	range	context	recommended	reconsume	the	current	input	code	point	reconsume	the	current	input	token	red	reference	box	in	css-shapes-1,	for	in	css-transforms-1	reference	pixel	region	break	relative	length	relative	length	unit	relative	positioning	relative	units
remaining	fragmentainer	extent	remaining	free	space	rendered	content	render	with	a	fallback	font	face	render	with	an	invisible	fallback	font	face	replaced	replaced	element	in	css-display-3	in	css21	representation	required	reset	implicitly	reset-only	sub-property	re-snap	resolved	type	restore	a	mark	reversing-adjusted	start	value	reversing	shortening
factor	:right	right	root	root	element	rosybrown	row	group	box	row	groups	royalblue	rule	run-in	in	css-display-3	in	css21	run-in	box	run-in	sequence	running	transition	saddlebrown	salmon	sandybrown	sans-serif	scaled	flex	shrink	factor	scope	screen	reader	scrollbar	scroll	snap	scroll	snap	area	scroll	snap	container	scroll	snapport	scroll	snap	position
seagreen	seashell	segment	break	selector	selector::match	selector::subject	of	self-alignment	self-alignment	properties	semitone	sequence	of	simple	selectors	serialize	an	value	serif	set	entries	set	explicitly	shall	shall	not	shared	alignment	context	sheet	shorthand	shorthand	property	in	css-cascade-4	in	css21	should	should	not	sibling	sideways
typesetting	sienna	silver	simple	block	simple	selector	single-line	flex	container	size	containment	size	containment	box	sizing	as	if	empty	sizing	function	skyblue	slateblue	slategray	slategrey	small	small	kana	snow	soft	wrap	break	soft	wrap	opportunity	source	source	document	spaces	space-separated	matching	space	to	fill	span	count	specified	size
specified	size	suggestion	in	css-flexbox-1	in	css-grid-1	specified	value	in	css-cascade-4	in	css21	'speech'	media	group	spread	break	spread	distance	springgreen	stacking	context	stack	level	start	starting	point	startmost	starts	with	an	ident	sequence	starts	with	a	number	starts	with	a	valid	escape	start	time	start	value	start	with	an	ident	sequence	start
with	a	number	statement	at-rule	'static'	media	group	static-position	rectangle	in	css-align-3	in	css-flexbox-1	steelblue	step	easing	function	step	position	steps	stop	or	comma	stretched	strictness	value	stroke	bounding	box	structural	pseudo-classes	strut	size	stuck	on	the	environment	style	attribute	style	change	event	style	rule	style	sheet	in	css-
namespaces-3	in	css-speech-1	in	css21	stylesheet	subject	(of	selector)	subjects	of	the	selector	sub-property	subsequent-sibling	combinator	substitute	a	var()	support	in	css-conditional-3,	for	CSS	in	css-fonts-4	supports	queries	switch	the	fontfaceset	to	loaded	switch	the	fontfaceset	to	loading	synthesize	baseline	synthesized	baseline	system	fonts	table
caption	box	table	element	tables	tabs	tab	size	tab	stop	tabular	container	'tactile'	media	group	tan	target	main	size	teal	text/css	text	node	text	sequence	textual	data	types	thistle	threeddarkshadow	threedface	threedhighlight	threedlightshadow	threedshadow	timing	function	tokenization	tokenize	tokenizer	tokens	token	stream	tomato	top	tracking	track
list	track	section	track	sizing	algorithm	track	sizing	function	transfer	function	element	transfer	function	element	attributes	transferred	size	suggestion	in	css-flexbox-1	in	css-grid-1	transformable	element	transformation	matrix	transformed	element	transitionable	transition	origin	transparent	trash	token	triangle	trinary	turquoise	type	selector	typeset
sideways	typesetting	sideways	typesetting	upright	typeset	upright	typographic	character	typographic	character	unit	typographic	letter	unit	typographic	mode	ua	in	css-speech-1	in	css21	in	css21	ua	origin	ua-origin	ua	style	sheet	under	unforced	break	universal	selector	unknown	unoccupied	upper-alpha-legal	uppercase	letter	upright	typesetting	url
use	a	negative	sign	used	value	in	css-cascade-4	in	css21	in	css21	user	user	agent	in	css-speech-1	in	css21	in	css21	user-agent	origin	user-agent	style	sheet	user	coordinate	system	user	origin	user-origin	user	style	sheet	uses	a	negative	sign	valid	image	validity	valid	style	sheet	value	value	definition	syntax	var()	substitution	vertical	axis	vertical	block
flow	vertical	dimension	vertical	offset	vertical-only	vertical	script	vertical	typographic	mode	vertical	writing	mode	viewport	viewport-percentage	lengths	violet	:visited	visited	(pseudo-class)	visual	angle	unit	visual	formatting	model	'visual'	media	group	volume	wheat	white	whitesmoke	white	space	whitespace	white	space	characters	width	window
windowframe	windowtext	word	separator	word-separator	character	would	start	an	ident	sequence	would	start	a	number	would	start	a	unicode-range	wrap	in	css-shapes-1	in	css-text-3	wrapping	in	css-shapes-1	in	css-text-3	writing	mode	x-axis	x-height	y-axis	yellow	yellowgreen	absolute	in	css-speech-1,	for	voice-pitch	in	css-speech-1,	for	voice-range
add	additive	alias	all	allow-end	all-petite-caps	all-scroll	all-small-caps	alpha	alphabetic	alternate	alternate-reverse	always	in	css-scroll-snap-1,	for	scroll-snap-stop	in	css-speech-1,	for	speak	annotation()	anywhere	in	css-text-3,	for	line-break	in	css-text-3,	for	overflow-wrap	arabic-indic	armenian	in	css-counter-styles-3,	for	in	css21	aural	auto	in	css-align-
3,	for	align-self	in	css-align-3,	for	justify-self	in	css-backgrounds-3,	for	background-size	in	css-backgrounds-3,	for	border-image-width	in	css-break-3,	for	break-before,	break-after	in	css-break-3,	for	break-inside,	page-break-inside	in	css-counter-styles-3,	for	@counter-style/range	in	css-counter-styles-3,	for	@counter-style/speak-as	in	css-flexbox-1,	for
align-items,	align-self	in	css-flexbox-1,	for	flex-basis	in	css-fonts-4,	for	@font-face/font-display	in	css-fonts-4,	for	font-kerning	in	css-fonts-4,	for	font-optical-sizing	in	css-fonts-4,	for	font-synthesis-position	in	css-fonts-4,	for	font-synthesis-small-caps	in	css-fonts-4,	for	font-synthesis-style	in	css-fonts-4,	for	font-synthesis-weight	in	css-grid-1,	for	in	css-grid-
1,	for	grid-template-columns,	grid-template-rows	in	css-images-3,	for	image-rendering	in	css-multicol-1,	for	column-count	in	css-multicol-1,	for	column-fill	in	css-multicol-1,	for	column-width	in	css-scroll-snap-1,	for	scroll-padding,	scroll-padding-inline,	scroll-padding-inline-start,	scroll-padding-inline-end,	scroll-padding-block,	scroll-padding-block-start,
scroll-padding-block-end	in	css-speech-1,	for	speak	in	css-speech-1,	for	voice-duration	in	css-text-3,	for	hyphens	in	css-text-3,	for	line-break	in	css-text-3,	for	text-align-last	in	css-text-3,	for	text-justify	in	css-text-decor-3,	for	text-underline-position	in	css-ui-3,	for	caret-color	in	css-ui-3,	for	cursor	in	css-will-change-1,	for	will-change	in	filter-effects-1,	for
color-interpolation-filters	auto-fill	auto-fit	[auto-flow	&&	dense?]	?	/	avoid	avoid-column	avoid-page	avoid-region	backwards	balance	balance-all	baseline	bengali	bidi-override	blink	block	bold	bolder	border-box	both	bottom	braille	break-all	break-spaces	break-word	in	css-text-3,	for	overflow-wrap	in	css-text-3,	for	word-break	bullets	cambodian
capitalize	caption	cell	center	in	css-align-3,	for	,	,	justify-self,	align-self,	justify-content,	align-content	in	css-backgrounds-3,	for	background-position	in	css-flexbox-1,	for	align-content	in	css-flexbox-1,	for	align-items,	align-self	in	css-flexbox-1,	for	justify-content	in	css-scroll-snap-1,	for	scroll-snap-align	in	css-speech-1,	for	voice-balance	in	css-text-3,	for
text-align	in	css-transforms-1,	for	transform-origin	ch	character-variant(#)	child	ch	unit	circle	cjk-decimal	cjk-earthly-branch	cjk-heavenly-stem	cjk-ideographic	clip	clone	close-quote	closest-corner	closest-side	cm	coarse	collapse	color	color-burn	color-dodge	col-resize	column	column-reverse	common-ligatures	condensed	contain	in	css-backgrounds-3,
for	background-size	in	css-images-3,	for	object-fit	content	in	css-contain-1,	for	contain	in	css-flexbox-1,	for	flex-basis	content-box	contents	context-menu	contextual	copy	cover	in	css-backgrounds-3,	for	background-size	in	css-images-3,	for	object-fit	crisp-edges	crosshair	cursive	cyclic	dark	in	css-fonts-4,	for	base-palette	in	css-fonts-4,	for	font-palette
darken	dashed	decimal	in	css-counter-styles-3,	for	in	css21	decimal-leading-zero	in	css-counter-styles-3,	for	in	css21	default	deg	dense	devanagari	diagonal-fractions	difference	digits	digits	?	digits	?	disc	in	css-counter-styles-3,	for	in	css21	disclosure-closed	disclosure-open	discretionary-ligatures	distribute	dot	dotted	double	double-circle	dpcm	dpi
dppx	each-line	ease	ease-in	ease-in-out	ease-out	ellipse	ellipsis	em	embed	embossed	emoji	em	unit	end	e-resize	ethiopic-numeric	evenodd	ew-resize	ex	exclude	exclusion	expanded	extends	extra-condensed	extra-expanded	ex	unit	fallback	fantasy	farthest-corner	farthest-side	fast	in	css-speech-1,	for	voice-rate	in	mediaqueries-4,	for	@media/update
female	fill	fill-box	filled	fine	first	first	baseline	fit-content()	fixed	flex	flex-end	in	css-align-3,	for	,	,	justify-self,	align-self,	justify-content,	align-content	in	css-flexbox-1,	for	align-content	in	css-flexbox-1,	for	align-items,	align-self	in	css-flexbox-1,	for	justify-content	flex-start	in	css-align-3,	for	,	,	justify-self,	align-self,	justify-content,	align-content	in	css-
flexbox-1,	for	align-content	in	css-flexbox-1,	for	align-items,	align-self	in	css-flexbox-1,	for	justify-content	flip	flow	flow-root	force-end	forwards	fr	from-image	fr	unit	full-size-kana	full-width	generic(fangsong)	generic(kai)	generic(khmer-mul)	generic(nastaliq)	georgian	in	css-counter-styles-3,	for	in	css21	grab	grabbing	grad	grid	in	css-display-3,	for
display,	in	css-grid-1,	for	display	/	[auto-flow	&&	dense?]	?	/	groove	gujarati	gurmukhi	handheld	hanging	hard-light	hebrew	help	hidden	high	in	css-speech-1,	for	voice-pitch	in	css-speech-1,	for	voice-range	high-quality	hiragana	hiragana-iroha	historical-forms	historical-ligatures	horizontal-tb	hover	hue	hz	icon	in	infinite	inherit	initial	inline	inline-block
inline-flex	inline-grid	in	css-display-3,	for	display,	in	css-grid-1,	for	display	inline-table	in	css-display-3,	for	display,	in	css21	inset	[|]	&&	?	&&	?	inter-character	interlace	intersect	inter-word	invert	in	css-ui-3,	for	outline-color	in	css21	isolate	isolate-override	italic	japanese-formal	japanese-informal	jis04	jis78	jis83	jis90	jump-both	jump-end	jump-none
jump-start	justify	justify-all	kannada	katakana	katakana-iroha	keep-all	khmer	khz	korean-hangul-formal	korean-hanja-formal	korean-hanja-informal	landscape	lao	last	last	baseline	layout	left	in	css-align-3,	for	justify-content,	justify-self,	justify-items	in	css-backgrounds-3,	for	background-position	in	css-break-3,	for	break-before,	break-after	in	css-
speech-1,	for	voice-balance	in	css-text-3,	for	text-align	in	css-text-decor-3,	for	text-emphasis-position	in	css-text-decor-3,	for	text-underline-position	in	css-transforms-1,	for	transform-origin	leftwards	legacy	{2}	light	in	css-fonts-4,	for	base-palette	in	css-fonts-4,	for	font-palette	lighten	lighter	linear	linearrgb	[?	?	?]+	[/]?	line-through	lining-nums	list-
item	literal-punctuation	local	loose	loud	low	in	css-speech-1,	for	voice-pitch	in	css-speech-1,	for	voice-range	lower-alpha	lower-armenian	lowercase	lower-greek	in	css-counter-styles-3,	for	in	css21	lower-latin	in	css-counter-styles-3,	for	in	css21	lower-roman	in	css-counter-styles-3,	for	in	css21	ltr	luminance	luminosity	malayalam	male	mandatory	manual
margin-box	match-parent	match-source	math	max-content	medium	in	css-backgrounds-3,	for	,	border-width,	border-top-width,	border-left-width,	border-bottom-width,	border-right-width,	border	in	css-speech-1,	for	pause-before,	pause-after	in	css-speech-1,	for	rest-before,	rest-after	in	css-speech-1,	for	voice-pitch	in	css-speech-1,	for	voice-range	in	css-
speech-1,	for	voice-rate	in	css-speech-1,	for	voice-volume	menu	message-box	min-content	minmax()	mixed	mm	moderate	mongolian	monospace	move	ms	multiply	myanmar	ne-resize	nesw-resize	neutral	never	no-clip	no-close-quote	no-common-ligatures	no-contextual	no-discretionary-ligatures	no-drop	no-historical-ligatures	none	in	css-animations-1,
for	animation-fill-mode	in	css-animations-1,	for	animation-name	in	css-backgrounds-3,	for	,	border-style,	border-top-style,	border-left-style,	border-bottom-style,	border-right-style,	border	in	css-backgrounds-3,	for	background-image	in	css-backgrounds-3,	for	box-shadow	in	css-contain-1,	for	contain	in	css-display-3,	for	display,	in	css-flexbox-1,	for	flex	in
css-fonts-4,	for	font-kerning	in	css-fonts-4,	for	font-optical-sizing	in	css-fonts-4,	for	font-size-adjust	in	css-fonts-4,	for	font-synthesis-position	in	css-fonts-4,	for	font-synthesis-small-caps	in	css-fonts-4,	for	font-synthesis-style	in	css-fonts-4,	for	font-synthesis-weight	in	css-fonts-4,	for	font-variant	in	css-fonts-4,	for	font-variant-ligatures	in	css-grid-1,	for	grid-
template	in	css-grid-1,	for	grid-template-areas	in	css-grid-1,	for	grid-template-rows,	grid-template-columns	in	css-images-3,	for	image-orientation	in	css-images-3,	for	object-fit	in	css-multicol-1,	for	column-span	in	css-scroll-snap-1,	for	scroll-snap-align	in	css-scroll-snap-1,	for	scroll-snap-type	in	css-shapes-1,	for	shape-outside	in	css-speech-1,	for	pause-
before,	pause-after	in	css-speech-1,	for	rest-before,	rest-after	in	css-speech-1,	for	voice-stress	in	css-text-3,	for	hanging-punctuation	in	css-text-3,	for	hyphens	in	css-text-3,	for	text-justify	in	css-text-3,	for	text-transform	in	css-text-decor-3,	for	text-decoration-line	in	css-text-decor-3,	for	text-emphasis-style	in	css-transitions-1,	for	transition-property	in
css-ui-3,	for	cursor	in	css-writing-modes-4,	for	text-combine-upright	in	mediaqueries-4,	for	@media/hover	in	mediaqueries-4,	for	@media/overflow-block	in	mediaqueries-4,	for	@media/overflow-inline	in	mediaqueries-4,	for	@media/pointer	in	mediaqueries-4,	for	@media/update	'none'::as	border	style	nonzero	no-open-quote	no-punctuation	no-repeat
normal	in	compositing-1,	for	in	css-align-3,	for	align-self	in	css-align-3,	for	justify-content,	align-content	in	css-align-3,	for	justify-self	in	css-align-3,	for	row-gap,	column-gap,	gap	in	css-animations-1,	for	animation-direction	in	css-fonts-4,	for	font-feature-settings	in	css-fonts-4,	for	font-kerning	in	css-fonts-4,	for	font-language	override	in	css-fonts-4,	for
font-palette	in	css-fonts-4,	for	font-style	in	css-fonts-4,	for	font-variant	in	css-fonts-4,	for	font-variant-alternates	in	css-fonts-4,	for	font-variant-caps	in	css-fonts-4,	for	font-variant-east-asian	in	css-fonts-4,	for	font-variant-emoji	in	css-fonts-4,	for	font-variant-ligatures	in	css-fonts-4,	for	font-variant-numeric	in	css-fonts-4,	for	font-variant-position	in	css-
fonts-4,	for	font-weight	in	css-fonts-4,	for	font-width	in	css-scroll-snap-1,	for	scroll-snap-stop	in	css-speech-1,	for	speak-as	in	css-speech-1,	for	voice-rate	in	css-speech-1,	for	voice-stress	in	css-text-3,	for	letter-spacing	in	css-text-3,	for	line-break	in	css-text-3,	for	overflow-wrap	in	css-text-3,	for	white-space	in	css-text-3,	for	word-break	in	css-text-3,	for
word-spacing	in	css-writing-modes-4,	for	unicode-bidi	not	not-allowed	nowrap	in	css-flexbox-1,	for	flex-wrap	in	css-text-3,	for	white-space	n-resize	ns-resize	numbers	numeric	nw-resize	nwse-resize	objectboundingbox	oblique	?	old	oldstyle-nums	only	open	open-quote	optional	ordinal	oriya	ornaments()	outset	over	overlay	overline	p3	padding-box	page
paged	paint	paused	pc	persian	petite-caps	pixelated	plaintext	pointer	portrait	pre	pre-line	preserve	pre-wrap	print	progress	progressive	projection	proportional-nums	proportional-width	proximity	pt	px	q	rad	rec2020	recto	reduced	region	rem	rem	unit	repeat	repeat-x	repeat-y	reverse	revert	ridge	right	in	css-align-3,	for	justify-content,	justify-self,
justify-items	in	css-backgrounds-3,	for	background-position	in	css-break-3,	for	break-before,	break-after	in	css-speech-1,	for	voice-balance	in	css-text-3,	for	text-align	in	css-text-decor-3,	for	text-emphasis-position	in	css-text-decor-3,	for	text-underline-position	in	css-transforms-1,	for	transform-origin	rightwards	round	row	in	css-flexbox-1,	for	flex-
direction	in	css-grid-1,	for	grid-auto-flow	row-resize	row-reverse	rtl	ruby	ruby-base	ruby-base-container	ruby-text	ruby-text-container	run-in	running	s	safe	sans-serif	saturation	scale-down	screen	in	compositing-1,	for	in	mediaqueries-4,	for	@media	scroll	scroll-position	self-end	self-start	semi-condensed	semi-expanded	in	css-speech-1,	for	voice-pitch	in
css-speech-1,	for	voice-range	se-resize	serif	sesame	sideways	sideways-lr	sideways-right	sideways-rl	silent	simp-chinese-formal	simp-chinese-informal	simplified	size	slashed-zero	slice	slow	in	css-speech-1,	for	voice-rate	in	mediaqueries-4,	for	@media/update	small-caps	small-caption	smooth	soft	soft-light	solid	space	space-around	space-between	space-
evenly	span	&&	[||]	span	&&	[||]	speech	spell-out	square	in	css-counter-styles-3,	for	in	css21	s-resize	srgb	stacked-fractions	start	status-bar	step-end	step-start	stretch	strict	in	css-contain-1,	for	contain	in	css-text-3,	for	line-break	+	stroke-box	strong	styleset(#)	stylistic()	sub	subtract	super	swap	swash()	sw-resize	symbolic	system-ui	table	in	css-
display-3,	for	display,	in	css21	table-caption	in	css-display-3,	for	display,	in	css21	table-cell	in	css-display-3,	for	display,	in	css21	table-column	in	css-display-3,	for	display,	in	css21	table-column-group	in	css-display-3,	for	display,	in	css21	table-footer-group	in	css-display-3,	for	display,	in	css21	table-header-group	in	css-display-3,	for	display,	in	css21
table-row	in	css-display-3,	for	display,	in	css21	table-row-group	in	css-display-3,	for	display,	in	css21	tabular-nums	tamil	telugu	text	in	css-fonts-4,	for	font-variant-emoji	in	css-ui-3,	for	cursor	thai	thick	thin	tibetan	titling-caps	top	|	trad-chinese-formal	trad-chinese-informal	traditional	triangle	tty	turn	tv	ui-monospace	ui-rounded	ui-sans-serif	ui-serif
ultra-condensed	ultra-expanded	under	underline	unicase	unicode	unsafe	unset	upper-alpha	upper-armenian	uppercase	upper-latin	in	css-counter-styles-3,	for	in	css21	upper-roman	in	css-counter-styles-3,	for	in	css21	upright	userspaceonuse	verso	vertical-lr	vertical-rl	vertical-text	vh	view-box	visible	vmax	vmin	vw	wait	weak	words	wrap	wrap-reverse
w-resize	x	x-fast	x-high	in	css-speech-1,	for	voice-pitch	in	css-speech-1,	for	voice-range	x-loud	x-low	in	css-speech-1,	for	voice-pitch	in	css-speech-1,	for	voice-range	x-slow	x-soft	x-strong	x-weak	y	young	zoom-in	zoom-out	Special	thanks	to	Florian	Rivoal	for	creating	the	initial	draft	of	the	§ 3.2.1	Experimentation	and	Unstable	Features	recommendations.
Conformance	requirements	are	expressed	with	a	combination	of	descriptive	assertions	and	RFC	2119	terminology.	The	key	words	“MUST”,	“MUST	NOT”,	“REQUIRED”,	“SHALL”,	“SHALL	NOT”,	“SHOULD”,	“SHOULD	NOT”,	“RECOMMENDED”,	“MAY”,	and	“OPTIONAL”	in	the	normative	parts	of	this	document	are	to	be	interpreted	as	described	in
RFC	2119.	However,	for	readability,	these	words	do	not	appear	in	all	uppercase	letters	in	this	specification.	All	of	the	text	of	this	specification	is	normative	except	sections	explicitly	marked	as	non-normative,	examples,	and	notes.	[RFC2119]Examples	in	this	specification	are	introduced	with	the	words	“for	example”	or	are	set	apart	from	the	normative
text	with	class="example",	like	this:	Informative	notes	begin	with	the	word	“Note”	and	are	set	apart	from	the	normative	text	with	class="note",	like	this:	Note,	this	is	an	informative	note.Advisements	are	normative	sections	styled	to	evoke	special	attention	and	are	set	apart	from	other	normative	text	with	,	like	this:	UAs	MUST	provide	an	accessible
alternative.	A	style	sheet	is	conformant	to	this	specification	if	all	of	its	statements	that	use	syntax	defined	in	this	module	are	valid	according	to	the	generic	CSS	grammar	and	the	individual	grammars	of	each	feature	defined	in	this	module.	A	renderer	is	conformant	to	this	specification	if,	in	addition	to	interpreting	the	style	sheet	as	defined	by	the
appropriate	specifications,	it	supports	all	the	features	defined	by	this	specification	by	parsing	them	correctly	and	rendering	the	document	accordingly.	However,	the	inability	of	a	UA	to	correctly	render	a	document	due	to	limitations	of	the	device	does	not	make	the	UA	non-conformant.	(For	example,	a	UA	is	not	required	to	render	color	on	a
monochrome	monitor.)	An	authoring	tool	is	conformant	to	this	specification	if	it	writes	style	sheets	that	are	syntactically	correct	according	to	the	generic	CSS	grammar	and	the	individual	grammars	of	each	feature	in	this	module,	and	meet	all	other	conformance	requirements	of	style	sheets	as	described	in	this	module.	So	that	authors	can	exploit	the
forward-compatible	parsing	rules	to	assign	fallback	values,	CSS	renderers	must	treat	as	invalid	(and	ignore	as	appropriate)	any	at-rules,	properties,	property	values,	keywords,	and	other	syntactic	constructs	for	which	they	have	no	usable	level	of	support.	In	particular,	user	agents	must	not	selectively	ignore	unsupported	component	values	and	honor
supported	values	in	a	single	multi-value	property	declaration:	if	any	value	is	considered	invalid	(as	unsupported	values	must	be),	CSS	requires	that	the	entire	declaration	be	ignored.Once	a	specification	reaches	the	Candidate	Recommendation	stage,	non-experimental	implementations	are	possible,	and	implementors	should	release	an	unprefixed
implementation	of	any	CR-level	feature	they	can	demonstrate	to	be	correctly	implemented	according	to	spec.	To	establish	and	maintain	the	interoperability	of	CSS	across	implementations,	the	CSS	Working	Group	requests	that	non-experimental	CSS	renderers	submit	an	implementation	report	(and,	if	necessary,	the	testcases	used	for	that
implementation	report)	to	the	W3C	before	releasing	an	unprefixed	implementation	of	any	CSS	features.	Testcases	submitted	to	W3C	are	subject	to	review	and	correction	by	the	CSS	Working	Group.	The	look	of	an	HTML	form	can	be	greatly	improved	with	CSS:	Use	the	width	property	to	determine	the	width	of	the	input	field:	First	Name	Try	it	Yourself
»	The	example	above	applies	to	all	elements.	If	you	only	want	to	style	a	specific	input	type,	you	can	use	attribute	selectors:	input[type=text]	-	will	only	select	text	fields	input[type=password]	-	will	only	select	password	fields	input[type=number]	-	will	only	select	number	fields	etc..	Use	the	padding	property	to	add	space	inside	the	text	field.	Tip:	When
you	have	many	inputs	after	each	other,	you	might	also	want	to	add	some	margin,	to	add	more	space	outside	of	them:	First	Name	Last	Name	input[type=text]	{			width:	100%;		padding:	12px	20px;		margin:	8px	0;		box-sizing:	border-box;	}	Try	it	Yourself	»	Note	that	we	have	set	the	box-sizing	property	to	border-box.	This	makes	sure	that	the	padding
and	eventually	borders	are	included	in	the	total	width	and	height	of	the	elements.	Read	more	about	the	box-sizing	property	in	our	CSS	Box	Sizing	chapter.	Bordered	Inputs	Use	the	border	property	to	change	the	border	size	and	color,	and	use	the	border-radius	property	to	add	rounded	corners:	First	Name	If	you	only	want	a	bottom	border,	use	the
border-bottom	property:	First	Name	Colored	Inputs	Use	the	background-color	property	to	add	a	background	color	to	the	input,	and	the	color	property	to	change	the	text	color:	Focused	Inputs	By	default,	some	browsers	will	add	a	blue	outline	around	the	input	when	it	gets	focus	(clicked	on).	You	can	remove	this	behavior	by	adding	outline:	none;	to	the
input.	Use	the	:focus	selector	to	do	something	with	the	input	field	when	it	gets	focus:	Input	with	icon/image	If	you	want	an	icon	inside	the	input,	use	the	background-image	property	and	position	it	with	the	background-position	property.	Also	notice	that	we	add	a	large	left	padding	to	reserve	the	space	of	the	icon:	input[type=text]	{		background-color:
white;		background-image:	url('searchicon.png');		background-position:	10px	10px;			background-repeat:	no-repeat;		padding-left:	40px;	}	Try	it	Yourself	»	Animated	Search	Input	In	this	example	we	use	the	CSS	transition	property	to	animate	the	width	of	the	search	input	when	it	gets	focus.	You	will	learn	more	about	the	transition	property	later,	in	our
CSS	Transitions	chapter.	input[type=text]	{		transition:	width	0.4s	ease-in-out;}input[type=text]:focus	{			width:	100%;}	Try	it	Yourself	»	Styling	Textareas	Tip:	Use	the	resize	property	to	prevent	textareas	from	being	resized	(disable	the	"grabber"	in	the	bottom	right	corner):	Some	text...	textarea	{		width:	100%;		height:	150px;		padding:	12px	20px;	
box-sizing:	border-box;		border:	2px	solid	#ccc;		border-radius:	4px;		background-color:	#f8f8f8;		resize:	none;	}	Try	it	Yourself	»	Styling	Select	Menus	select	{		width:	100%;		padding:	16px	20px;		border:	none;		border-radius:	4px;		background-color:	#f1f1f1;	}	Try	it	Yourself	»	Styling	Input	Buttons	input[type=button],	input[type=submit],
input[type=reset]	{		background-color:	#04AA6D;		border:	none;		color:	white;		padding:	16px	32px;		text-decoration:	none;		margin:	4px	2px;		cursor:	pointer;	}/*	Tip:	use	width:	100%	for	full-width	buttons	*/	Try	it	Yourself	»	For	more	information	about	how	to	style	buttons	with	CSS,	read	our	CSS	Buttons	Tutorial.	Responsive	Form	Resize	the
browser	window	to	see	the	effect.	When	the	screen	is	less	than	600px	wide,	make	the	two	columns	stack	on	top	of	each	other	instead	of	next	to	each	other.	Advanced:	The	following	example	uses	media	queries	to	create	a	responsive	form.	You	will	learn	more	about	this	in	a	later	chapter.	Try	it	Yourself	»

