
	

https://kogesojoxu.tugoduzak.com/261946279586779630568567649854193575213565?kisixiriruwiruxajorigel=negamogowemajorobojuvugikuvunabipajoduximatiletupojobatejanonoxugenusexagadabevifijudukegugavobofogasupanowuxuxikewajelabuzinitisakuvuzuvanugibexijupiraloxasurofavemujojopizatepipatodosulafatewuvimomadilawa&utm_term=postman+example+api&lizemetexuwugasivopamuwapokavilopubemokiroziwofevojewetewugukifojotawex=giwufasudokudosapuninalevozudoguwifenifetoxufelasumunijigikokepuzikuperunadarimipozixibigavojazijovajoparu

Share	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	remix,	transform,	and	build	upon	the	material	for	any	purpose,	even	commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.	Attribution	You	must	give	appropriate	credit	,	provide	a	link	to	the	license,
and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests	the	licensor	endorses	you	or	your	use.	ShareAlike	If	you	remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the	original.	No	additional	restrictions	You	may	not	apply	legal	terms	or
technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not	have	to	comply	with	the	license	for	elements	of	the	material	in	the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No	warranties	are	given.	The	license	may	not	give	you	all	of	the	permissions	necessary	for
your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.	API	testing	is	a	software	testing	type	that	tends	to	validate	the	application	programming	interfaces.	As	per	Postman	API,	API	testing	is	confirming	that	an	API	is	working	as	expected.	It	sends	requests	to	an	API	and	monitors	the
responses	to	check	its	behavior	to	assess	the	functionality,	reliability,	performance,	and	security	of	an	API.	It	is	usually	considered	to	be	a	crucial	part	of	the	API	development	lifecycle.	What	is	Postman	API?Postman	recently	ranked	on	top	for	best	API	Platform,	by	G2	in	its	2023	Spring	Reports.	It	is	easy	and	user-friendly	and	offers	various	courses
and	projects.	To	use	it,	one	must	register	in	the	Postman	platform.	As	per	Postman,	it	is	an	API	platform	for	building	and	using	APIs	that	simplifies	each	step	of	the	API	lifecycle	and	streamlines	collaboration	so	one	can	create	better	APIs.	It	is	trusted	by	over	25	million	users	worldwide.	It	has	a	friendly	community	too	and	allows	API	testing	with	REST.
History	of	Postman:Just	like	every	origin	story,	the	origin,	purpose,	development	till	date	has	many	theories	but	web	based	APIs	tend	to	be	more	recent	and	the	example	can	be	Google	Maps,	something	we	use	pretty	often.	Postman	API	was	created	by	Abhinav	Asthana,	Ankit	Sobti	and	Abhijit	Kane	in	Bangalore,	India	(2012).	Firstly,	it	was	developed
as	a	plugin	for	Google	Chrome,	then	a	rich	client,	and	finally	a	thin	client	and	now,	Postman	Inc.,	originally	from	India,	has	its	headquarters	in	San	Francisco.	Syntax:	Example	of	API	Testing	using	PostmanHow	about	a	bookstore	or	maybe	Library	API?	We'll	test	that	in	this	example.	Firstly,	get	acquainted	with	the	basics	of	Postman	API	and	API
testing	fundamentals	first	like	HTTP	methods,	mostly.	You	need	to	create	an	account	in	the	Postman	API	platform.	Download	and	create	an	account	on	Postman	API.	You	can	also	use	their	workspace	online.Create	a	new	workspace	and	name	it	accordingly	like	postman	library	API.Next	we	will	create	a	new	request,	name	it,	POST.	I	wanted	to	add
books	so	I	created	this	request.Choose	POST	as	the	request	method.Enter	the	API	endpoint	URL	in	the	address	bar.	You	can	also	save	it	as	baseURL.	You	need	to	save	it	as	a	variable	first.	Let's	assume	the	baseURL	has	a	current	value	as	in	the	following	code	snippet	in	body.	Click	the	"Send"	button	to	execute	the	request.	Enter	any	book	details	in	the
code	snippetAnd	then	check	the	response	in	the	"Response"	window.	You	should	be	able	to	view	book	details.	Now	for	API	testing,	first,	go	to	the	"Tests"	tab.Response	window	at	bottom	showing	book	detailsLook	for	the	code	bracket	icon.	Select	JavaScript	Fetch.	Write	JavaScript	code	for	fetch	response	is,	like:	JavaScript	const	myHeaders	=	new
Headers();myHeaders.append("Content-Type",	"application/json");myHeaders.append("api-key",	"postmanrulz");	const	raw	=	JSON.stringify({	"title":	"To	Kill	a	Mockingbird	New",	"author":	"Harper	Lee",	"genre":	"fiction",	"yearPublished":	1960});	const	requestOptions	=	{	method:	"POST",	headers:	myHeaders,	body:	raw,	redirect:	"follow"};	fetch("	,
requestOptions)	.then((response)	=>	response.text())	.then((result)	=>	console.log(result))	.catch((error)	=>	console.error(error));For	test	body,	write	a	code	snippet	like:const	id	=	pm.response.json().idpm.collectionVariables.set("id",	id)Click	the	"Run"	button	in	the	"Tests"	tab	to	execute	the	code	snippet.	The	results	for	the	test	are	displayed	almost
instantly.	Check	and	evaluate	accordingly.Output:	Since	the	API	Testing	was	successful.	It	shows	the	response	status	and	body.	The	code	201	ishighlighted	in	green.According	to	Postman	API,	the	table	contains	the	status	code	that	it	offers.	Code	Range	Description	Example	2--	Success	200	-	OK201	-	Created204	-	No	content	but	OK	3--	Redirection	4--
Client	Error	400	-	Bad	request401	-	Unauthorized403	-	Not	Permitted404	-	Not	Found	5--	Server	Error	500	-	Internal	server	error502	-	Bad	gateway504	-	Gateway	timeoutKey	Features:It	can	build	various	API	requests	like,	GET,	POST,	PUT,	DELETE,	etc.	with	user-friendly	interfaces	for	defining	URLs,	headers,	body	parameters,	and	authentication
methods.It	can	send,	analyze	and	execute	requests	easily.It	has	simple	and	neat	documentations.Write	tests	using	JavaScript	or	Collections/Environments	that	validates	response	codes,	body	content,	headers,	and	other	aspects.	You	can	group	them,	and	execute	entire	collections	of	tests	at	once	using	the	collection	runner	to	streamline	automated
testing.Share	collections	and/or	test	scripts	with	team	members	via	workspaces	or	public	links	to	enable	collaborative	API	development.Manage	environment	variables	to	store	and	reuse	values	like	API	keys,	base	URLs,	across	requests	and	tests,	enabling	maintainability	and	reusability.It	has	Mock	servers	that	simulates	API	responses	for
development	and	testing	purposes,	allowing	you	to	work	on	API	integration	without	relying	on	external	endpoints.It	can	track	API	performance	metrics	like,	response	times,	errors	over	time	to	identify	potential	issues	and	optimize	performance.Advantages:It	has	neat,	user	friendly	interface.It	tends	to	organize	and	group	API	requests	(in	Postman	API
collections)	efficiently.It	can	monitor	and	analyse	by	tracking	API	performance,	response	times	etc.Disadvantages:There	might	be	few	paid	tools	or	features	in	this	platform.They	always	need	to	add	an	additional	server	to	the	user's	local	environment.Storing	tokens	is	not	safe	in	Postman	API.	This	page	provides	post-response	script	examples	for
various	API	testing	scenarios	in	Postman.	You	can	use	these	post-response	scripts	in	your	request	to	parse	response	data	and	make	assertions.	You	can	also	use	these	scripts	to	validate	response	structure	and	troubleshoot	common	test	errors.To	write	your	first	post-response	script,	open	a	request	in	Postman,	then	select	the	Scripts	>	Post-response
tab.	Enter	the	following	JavaScript	code:pm.test("Status	code	is	200",	function	()	{	pm.response.to.have.status(200);});This	code	uses	the	pm	library	to	run	the	test	method.	The	text	string	will	appear	in	the	test	output.	The	function	inside	the	test	represents	an	assertion.	Postman	tests	can	use	Chai	Assertion	Library	BDD	syntax,	which	provides
options	to	optimize	how	readable	your	tests	are	to	you	and	your	collaborators.	In	this	case,	the	code	uses	a	to.have	chain	to	express	the	assertion.This	test	checks	the	response	code	returned	by	the	API.	If	the	response	code	is	200,	the	test	will	pass,	otherwise	it	will	fail.	Select	Send	and	go	to	the	Test	Results	tab	in	the	response	area.To	learn	what	test
results	look	like	when	they	pass	or	fail,	change	the	status	code	in	the	assertion	code	and	send	the	request	again.You	can	structure	your	test	assertions	in	a	variety	of	ways,	depending	on	how	you	want	the	results	to	output.	The	following	code	is	an	alternative	way	of	achieving	the	same	test	as	the	one	before	using	the	expect	syntax:pm.test("Status	code
is	200",	()	=>	{	pm.expect(pm.response.code).to.eql(200);});Refer	to	the	Chai	Assertion	Library	Docs	for	a	complete	overview	of	assertion	syntax	options.Use	multiple	assertionsYour	tests	can	include	multiple	assertions	as	part	of	a	single	test.	Use	this	to	group	together	related	assertions:pm.test("The	response	has	all	properties",	()	=>	{	const
responseJson	=	pm.response.json();	pm.expect(responseJson.type).to.eql('vip');	pm.expect(responseJson.name).to.be.a('string');	pm.expect(responseJson.id).to.have.lengthOf(1);});If	any	of	the	contained	assertions	fails,	the	test	as	a	whole	will	fail.	All	assertions	must	be	successful	for	the	test	to	pass.Parse	response	body	dataTo	carry	out	assertions	on
your	responses,	you	will	first	need	to	parse	the	data	into	a	JavaScript	object	that	your	assertions	can	use.To	parse	JSON	data,	use	the	following	syntax:const	responseJson	=	pm.response.json();To	parse	XML,	use	the	following:const	responseJson	=	xml2Json(pm.response.text());If	you're	dealing	with	complex	XML	responses	you	may	find	Console
logging	useful.To	parse	CSV,	use	the	CSV	parse	(csv-parse/lib/sync)	utility:const	parse	=	require('csv-parse/lib/sync');const	responseJson	=	parse(pm.response.text());To	parse	HTML,	use	cheerio:const	$	=	cheerio.load(pm.response.text());	console.log($.html());Handle	responses	that	don't	parseIf	you	can't	parse	the	response	body	into	JavaScript
because	it's	not	formatted	as	JSON,	XML,	HTML,	CSV,	or	any	other	parsable	data	format,	you	can	still	make	assertions	on	the	data.Test	if	the	response	body	has	a	string:pm.test("Body	contains	string",()	=>	{	pm.expect(pm.response.text()).to.include("customer_id");});This	doesn't	tell	you	where	the	string	was	encountered	because	it	carries	out	the
test	on	the	whole	response	body.	Test	if	a	response	matches	a	string:pm.test("Body	is	string",	function	()	{	pm.response.to.have.body("whole-body-text");});Make	assertions	on	the	HTTP	responseYour	tests	can	check	various	aspects	of	a	request	response,	including	the	body,	status	codes,	headers,	cookies,	response	times,	and	more.Test	response
bodyCheck	for	particular	values	in	the	response	body:pm.test("Person	is	Jane",	()	=>	{	const	responseJson	=	pm.response.json();	pm.expect(responseJson.name).to.eql("Jane");	pm.expect(responseJson.age).to.eql(23);});Test	status	codesTest	for	the	response	status	code:pm.test("Status	code	is	201",	()	=>	{	pm.response.to.have.status(201);});If	you
want	to	test	for	the	status	code	being	one	of	a	set,	include	them	all	in	an	array	and	use	oneOf:pm.test("Successful	POST	request",	()	=>	{	pm.expect(pm.response.code).to.be.oneOf([201,202]);});Check	the	status	code	text:pm.test("Status	code	name	has	string",	()	=>	{	pm.response.to.have.status("Created");});	Check	that	a	response	header	is
present:pm.test("Content-Type	header	is	present",	()	=>	{	pm.response.to.have.header("Content-Type");});Test	for	a	response	header	having	a	particular	value:pm.test("Content-Type	header	is	application/json",	()	=>	{	pm.expect(pm.response.headers.get('Content-Type')).to.include('application/json');});Test	cookiesTest	if	a	cookie	is	present	in	the
response:pm.test("Cookie	isLoggedIn	is	present",	()	=>	{	pm.expect(pm.cookies.has('isLoggedIn')).to.be.true;});Test	for	a	particular	cookie	value:pm.test("Cookie	isLoggedIn	has	value	1",	()	=>	{	pm.expect(pm.cookies.get('isLoggedIn')).to.eql('1');});Test	response	timesTest	for	the	response	time	to	be	within	a	specified	range:pm.test("Response	time
is	less	than	200ms",	()	=>	{	pm.expect(pm.response.responseTime).to.be.below(200);});Common	assertion	examplesThe	following	examples	of	common	assertions	might	help	you	write	your	post-response	scripts.For	a	more	comprehensive	overview	of	what	you	can	include	in	your	assertions,	refer	to	the	Chai	Assertion	Library	Docs.Assert	a	response
value	against	a	variableCheck	if	a	response	property	has	the	same	value	as	a	variable	(this	example	uses	an	environment	variable):pm.test("Response	property	matches	environment	variable",	function	()	{	pm.expect(pm.response.json().name).to.eql(pm.environment.get("name"));});See	Using	variables	to	learn	more	about	using	variables	in	your	post-
response	scripts.Assert	a	value	typeTest	the	type	of	any	part	of	the	response:const	jsonData	=	pm.response.json();pm.test("Test	data	type	of	the	response",	()	=>	{	pm.expect(jsonData).to.be.an("object");	pm.expect(jsonData.name).to.be.a("string");	pm.expect(jsonData.age).to.be.a("number");	pm.expect(jsonData.hobbies).to.be.an("array");
pm.expect(jsonData.website).to.be.undefined;	pm.expect(jsonData.email).to.be.null;});Assert	array	propertiesCheck	if	an	array	is	empty,	and	if	it	has	particular	items:	const	jsonData	=	pm.response.json();pm.test("Test	array	properties",	()	=>	{	pm.expect(jsonData.errors).to.be.empty;	pm.expect(jsonData.areas).to.include("goods");	const
notificationSettings	=	jsonData.settings.find	(m	=>	m.type	===	"notification");	pm.expect(notificationSettings)	.to.be.an("object",	"Could	not	find	the	setting");	pm.expect(notificationSettings.detail).to.include("sms");	pm.expect(notificationSettings.detail)	.to.have.members(["email",	"sms"]);});The	order	in	.members	doesn't	affect	the	test.Assert	object
propertiesAssert	that	an	object	has	keys	or	properties:pm.expect({a:	1,	b:	2}).to.have.all.keys('a',	'b');pm.expect({a:	1,	b:	2}).to.have.any.keys('a',	'b');pm.expect({a:	1,	b:	2}).to.not.have.any.keys('c',	'd');pm.expect({a:	1}).to.have.property('a');pm.expect({a:	1,	b:	2}).to.be.a('object')	.that.has.all.keys('a',	'b');Target	can	be	an	object,	set,	array	or	map.	If
.keys	is	run	without	.all	or	.any,	the	expression	defaults	to	.all.	As	.keys	behavior	varies	based	on	the	target	type,	it's	recommended	to	check	the	type	before	using	.keys	with	.a.Assert	that	a	value	is	in	a	setCheck	a	response	value	against	a	list	of	valid	options:	pm.test("Value	is	in	valid	list",	()	=>	{	pm.expect(pm.response.json().type)
.to.be.oneOf(["Subscriber",	"Customer",	"User"]);});Assert	that	an	object	is	containedCheck	that	an	object	is	part	of	a	parent	object:	pm.test("Object	is	contained",	()	=>	{	const	expectedObject	=	{	"created":	true,	"errors":	[]	};	pm.expect(pm.response.json()).to.deep.include(expectedObject);});The	.deep	assertion	causes	all	.equal,	.include,	.members,
.keys,	and	.property	assertions	that	follow	in	the	chain	to	use	deep	equality	instead	of	strict	(===)	equality.Assert	the	current	environmentCheck	the	active	environment	in	Postman:pm.test("Check	the	active	environment",	()	=>	{	pm.expect(pm.environment.name).to.eql("Production");});Troubleshoot	common	test	errorsWhen	you	encounter	errors	or
unexpected	behavior	in	your	post-response	scripts,	the	Postman	Console	can	help	you	to	identify	the	source.	By	combining	console.log(),	console.info(),	console.warn(),	and	console.error()	debug	statements	with	your	test	assertions,	you	can	examine	the	content	of	the	HTTP	requests	and	responses,	and	Postman	data	items	such	as	variables.	You	can
also	use	the	console.clear()	method	to	clear	information	from	the	console.	Select	Console	from	the	Postman	footer	to	open	it.Log	the	value	of	a	variable	or	response	property:console.log(pm.collectionVariables.get("name"));console.log(pm.response.json().name);Log	the	type	of	variable	or	response	property:console.log(typeof	pm.response.json().id);Use
Console	logs	to	mark	code	execution,	sometimes	known	as	"trace	statements":if	(pm.response.json().id)	{	console.log("id	was	found!");	}	else	{	console.log("no	id	...");	}Assertion	deep	equality	errorYou	might	encounter	the	AssertionError:	expected	to	deeply	equal	''	error.	For	example,	this	would	arise	with	the	following
code:pm.expect(1).to.eql("1");This	happens	because	the	test	is	comparing	a	number	to	a	string	value.	The	test	will	only	return	true	if	both	the	type	and	value	are	equal.Variable	not	defined	errorYou	might	encounter	the	ReferenceError:	is	not	defined	error.	This	typically	happens	when	you're	attempting	to	reference	a	variable	that	hasn't	been	declared
or	is	outside	the	scope	of	your	test	code.In	the	following	example,	a	JSON	object	is	the	value	of	a	variable	in	the	first	test.	The	second	test	is	attempting	to	reference	the	variable,	but	it	can't	because	the	variable	is	outside	the	scope	of	the	second	test's	code.pm.test("Test	1",	()	=>	{	const	jsonData	=	pm.response.json();
pm.expect(jsonData.name).to.eql("John");});	pm.test("Test	2",	()	=>	{	pm.expect(jsonData.age).to.eql(29);	});Make	sure	variables	are	available	at	the	global	scope	if	test	functions	needs	to	reference	it.	In	the	previous	example,	moving	const	jsonData	=	pm.response.json();	before	the	first	pm.test	would	make	it	available	to	both	test	functions.Assertion
undefined	errorYou	might	encounter	the	AssertionError:	expected	undefined	to	deeply	equal	error.	Typically	this	happens	when	you	are	referring	to	a	property	that	doesn't	exist	or	is	out	of	scope.const	jsonData	=	pm.response.json();pm.expect(jsonData.name).to.eql("John");In	this	example,	if	you	get	the	error	AssertionError:	expected	undefined	to
deeply	equal	'John',	this	indicates	that	the	name	property	isn't	defined	in	the	jsonData	object.Test	not	failingThere	may	be	occasions	where	you	expect	a	test	to	fail,	and	it	doesn't.	Make	sure	your	test	code	is	syntactically	correct,	then	resend	your	request.In	the	following	example,	the	test	is	expected	to	fail	because	true	doesn't	equal	false.	The	test
actually	passes	because	the	pm.test	function	isn't	correctly	defined.	The	pm.test	function	is	missing	the	first	parameter,	which	is	a	text	string	that	displays	in	the	test	result	output.	You	can	learn	more	about	defining	tests	using	the	pm.test	function.pm.test(function	()	{	pm.expect(true).to.eql(false);});	You	can	validate	your	JSON	Schema	with	Ajv.In
the	following	example,	the	test	will	pass	only	when	the	request	includes	a	query	parameter	named	alpha.const	schema	=	{	required:	["args"],	properties:	{	args:	{	required:	["alpha"],	properties:	{	alpha:	{	type:	"string"	}	}	}	}};	pm.test('Response	is	valid',	function()	{	pm.response.to.have.jsonSchema(schema);});Learn	more	about	using	Ajv	JSON
Schema	validator,	which	supersedes	the	deprecated	tv4.Send	an	asynchronous	requestYou	can	send	a	request	from	your	test	code	and	log	the	response:pm.sendRequest("	,	function	(err,	response)	{	console.log(response.json());});Previous	style	of	writing	Postman	tests	(deprecated)This	section	refers	to	deprecated	script	syntax	used	in	earlier
versions	of	Postman.	If	you	are	writing	new	scripts,	use	the	current	syntax.The	previous	style	of	writing	Postman	tests	relies	on	setting	values	for	the	tests	object.	Set	a	descriptive	key	for	an	element	in	the	object	and	then	assert	if	it's	true	or	false.	For	example,	the	following	will	check	if	the	response	body	has	the	user_id	string:tests["Body	contains
user_id"]	=	responsebody.has("user_id");If	you	use	the	previous	style	of	writing	Postman	tests,	the	syntax	will	appear	in	the	code	editor	with	a	strikethrough	to	indicate	that	the	style	is	deprecated.	A	warning	will	log	to	the	Postman	Console,	letting	you	know	that	the	style	you're	using	is	deprecated.	The	warning	will	also	log	syntax	for	the	current	style
that's	recommended	instead.Add	as	many	keys	as	needed,	depending	on	how	many	things	you	want	to	test	for.	View	your	test	results	in	the	response	viewer	under	the	Post-response	tab.	The	tab	header	shows	how	many	tests	passed,	and	the	keys	that	you	set	in	the	tests	variable	are	listed	there.	If	the	value	evaluates	to	true,	the	test
passed.postman.setEnvironmentVariable("key",	"value");	const	array	=	[1,	2,	3,	4];postman.setEnvironmentVariable("array",	JSON.stringify(array,	null,	2));const	obj	=	{	a:	[1,	2,	3,	4],	b:	{	c:	'val'	}	};postman.setEnvironmentVariable("obj",	JSON.stringify(obj));	postman.getEnvironmentVariable("key");	const	array	=
JSON.parse(postman.getEnvironmentVariable("array"));const	obj	=	JSON.parse(postman.getEnvironmentVariable("obj"));	postman.clearEnvironmentVariable("key");	postman.setGlobalVariable("key",	"value");	postman.getGlobalVariable("key");	postman.clearGlobalVariable("key");	postman.setNextRequest("request_name");	tests["Body	matches
string"]	=	responseBody.has("string_you_want_to_search");	tests["Body	is	correct"]	=	responseBody	===	"response_body_string";	const	data	=	JSON.parse(responseBody);tests["Your	test	name"]	=	data.value	===	100;	tests["Content-Type	is	present"]	=	postman.getResponseHeader("Content-Type");tests["Content-Type	is	present"]	=
postman.getResponseHeader("Content-Type");	tests["Content-Type	is	present"]	=	responseHeaders.hasOwnProperty("Content-Type");	tests["Response	time	is	less	than	200ms"]	=	responseTime	<	200;	tests["Response	time	is	acceptable"]	=	_.inRange(responseTime,	100,	1001);	tests["Status	code	is	200"]	=	responseCode.code	===	200;	tests["Status
code	name	has	string"]	=	responseCode.name.has("Created");	tests["Successful	POST	request"]	=	responseCode.code	===	201	||	responseCode.code	===	202;Need	help	debugging	a	script?	Connect	with	developersNeed	help	debugging	a	script?	Connect	with	developersAsk	the	communityLast	modified:	2025/05/12	Postman	is	a	tool	that	can	help
you	develop	APIs.	From	capturing	and	validating	to	testing	requests	and	responses!	You	need	to	perform	API	testing	to	ensure	that	your	Application	Programming	Interface	or	API	is	working	correctly	and	as	it	should.	This	article	shows	you	how	API	testing	is	done	using	Postman	and	JavaScript.IntroductionIn	todays	software	development
environment,	ensuring	the	quality	and	functionality	of	APIs	is	crucial.	Modern	software	applications	are	built	around	APIs,	which	make	it	possible	for	different	systems	to	easily	sharedata	and	communicate	with	each	other.	To	make	sure	they	function	properly	and	followthe	required	standards,	APIs	go	through	extensive	testing,	just	like	any	other
software	component.	This	is	where	API	testing	comes	into	play.API	testing	involves	testing	the	APIs	directly	to	verify	their	functionality,	reliability,	performance,	and	security.	In	the	long	term,	it	helps	save	time	and	costs	by	identifying	problems	early	in	the	development	cycle.	Tools	like	Postman	are	essential	to	perform	efficient	and	comprehensive
API	testing.In	this	guide,	I	will	explain	how	API	testing	in	Postman	works	using	JavaScript	and	provide	you	with	the	knowledge	needed	to	create	more	effective	API	tests.	Well	cover	everything	from	the	basics	of	API	testing	to	advanced	testing	techniques	using	Postman.	So,	lets	begin!What	is	API	Testing?API	testing	is	a	type	of	software	testing	that
focuses	on	verifying	that	APIs	function	as	expected.	Unlike	traditional	UI	testing,	which	tests	the	graphical	interface	of	an	application,	API	testing	examines	the	behind-the-scenes	code	that	allows	different	software	systems	to	talk	to	each	other.	This	involves	sending	requests	to	API	endpoints	and	analyzing	the	responses	to	ensure	they	meet	the
expected	outcomes.Testing	APIs	early	is	crucial	to	catch	any	issues	before	they	affect	the	rest	of	the	application.	It	helps	ensure	that	the	core	functionality	of	the	application	is	reliable	and	performs	well	before	any	front-end	components	are	even	developed.	This	approach	helps	catch	bugs	early	in	the	development	process,	leading	to	a	more	robust	and
stable	software	product.API	testing	covers	various	aspects	of	an	APIs	functionality,	including:Functionality	Testing:	Ensuring	that	the	API	endpoints	work	correctly	and	return	the	expected	results.Performance	Testing:	Assessing	the	APIs	responsiveness,	speed,	and	scalability	under	different	conditions.Security	Testing:	Verifying	that	the	API	is	secure
and	protected	against	unauthorized	access	and	potential	vulnerabilities.Reliability	Testing:	Ensuring	that	the	API	consistently	performs	well	under	various	scenarios	and	does	not	fail	unexpectedly.Integration	Testing:	Checking	that	different	API	components	work	together	as	expected.Effective	API	testing	involves	a	combination	of	automated	and
manual	testing	techniques.	Automated	tests	help	in	running	repetitive	tasks	and	regression	tests	efficiently,	while	manual	testing	allows	for	more	exploratory	and	in-depth	testing	of	complex	scenarios.By	incorporating	API	testing	into	your	development	workflow,	you	can	make	sure	that	your	APIs	are	reliable,	performant,	and	secure,	ultimately
leading	to	better	software	quality	and	user	experience.Why	is	API	Testing	Important?API	testing	is	essential	for	several	reasons.	At	its	core,	it	ensures	that	your	API	works	correctly	and	meets	the	intended	requirements.	Beyond	that,	though,	it	has	a	big	impact	on	your	applications	overall	performance	and	quality.	Here	are	some	key	reasons	why	API
testing	is	so	important:Ensuring	FunctionalityThe	primary	goal	of	API	testing	is	to	verify	that	the	API	functions	as	expected.	This	includes	checking	that	each	endpoint	returns	the	correct	responses,	the	data	formats	are	accurate,	and	the	logic	is	implemented	correctly.	By	thoroughly	testing	the	functionality,	you	can	catch	issues	early	and	prevent
bugs	from	reaching	the	production	environment.Performance	VerificationAPIs	are	expected	to	perform	well	under	various	conditions.	Performance	testing	helps	assess	how	your	API	handles	different	loads	and	stress	levels.	It	ensures	that	the	API	can	manage	a	high	number	of	requests	efficiently	and	responds	quickly,	providing	a	smooth	experience
for	the	end-users.Security	AssuranceAPIs	often	handle	sensitive	data,	making	security	testing	a	critical	aspect	of	API	testing.	You	can	make	sure	that	your	API	is	safe	from	threats	like	unauthorizedaccess,	data	breaches,	and	other	malicious	attacks	by	testing	for	security	vulnerabilities.	This	is	essential	to	maintain	user	confidence	and	adhere	to	data
protection	laws.Reliability	and	StabilityReliability	testing	ensures	that	your	API	consistently	performs	well	under	different	scenarios	and	does	not	fail	unexpectedly.	This	includes	testing	for	various	edge	cases,	error	conditions,	and	unexpected	inputs.	By	ensuring	the	reliability	and	stability	of	your	API,	you	can	provide	a	dependable	service	to	your
users.Integration	ValidationAPIs	often	act	as	the	glue	between	different	software	components	or	systems.	Integration	testing	checks	that	these	components	work	together	seamlessly.	It	verifies	that	data	flows	correctly	between	systems	and	that	any	dependencies	or	interactions	are	handled	properly.By	catching	bugs	and	issues	early	in	the
development	process,	API	testing	helps	reduce	the	cost	of	fixing	problems	later	on.	It	is	much	cheaper	and	easier	to	address	issues	during	the	development	phase	than	after	the	product	has	been	released.	This	efficiency	results	in	cost	savings	and	a	more	efficient	development	cycle.Improved	User	ExperienceUltimately,	API	testing	contributes	to	a
better	user	experience.	By	ensuring	that	your	API	is	functional,	performant,	secure,	reliable,	and	well-integrated,	you	provide	a	high-quality	service	to	your	users.	This	leads	to	higher	user	satisfaction.Types	of	API	TestingThere	are	different	types	of	API	testing,	each	serving	a	specific	purpose	in	ensuring	the	overall	quality	and	functionality	of	an	API.
Heres	an	overview	of	the	different	types	of	API	testing	and	what	they	aim	to	achieve:Unit	TestingUnit	testing	checks	that	an	applications	smallest	components,	usually	individual	functions	or	methods,	function	as	intended.	For	APIs,	this	means	testing	the	individual	endpoints	and	the	logic	behind	them.	Unit	tests	are	usually	automated	and	help	catch
issues	at	an	early	stage	in	the	development	process.Example://	Example	of	a	unit	test	for	an	API	endpointpm.test("Status	code	is	200",	function	()	{	pm.response.to.have.status(200);});Integration	TestingIntegration	testing	involves	testing	multiple	components	or	services	together	to	ensure	they	work	as	a	whole.	For	APIs,	this	means	checking	how
different	endpoints	interact	with	each	other	and	with	external	services.	It	verifies	that	data	is	correctly	passed	between	components	and	that	they	function	together	as	expected.Example://	Example	of	an	integration	testpm.test("User	API	integrates	correctly	with	Auth	API",	function	()	{	var	jsonData	=	pm.response.json();
pm.expect(jsonData.authenticated).to.be.true;});End-to-End	TestingEnd-to-end	testing	simulates	real	user	scenarios	and	validates	the	entire	workflow	of	the	application.	For	APIs,	this	means	testing	the	complete	process	from	start	to	finish,	such	as	creating	a	user,	updating	their	information,	and	deleting	the	user.	It	ensures	that	all	parts	of	the
application	work	together	seamlessly.Example://	Example	of	an	end-to-end	testpm.test("Complete	user	workflow",	function	()	{	pm.sendRequest({	url:	"	,	method:	"POST",	body:	{	mode:	"raw",	raw:	JSON.stringify({	name:	"John	Doe"	}),	},	},	function	(err,	res)	{	pm.expect(res).to.have.status(201);	},);});Performance	TestingPerformance	testing
evaluates	how	well	an	API	performs	under	different	loads.	It	helps	identify	bottlenecks	and	ensures	that	the	API	can	handle	the	expected	load	efficiently.Example://	Example	of	a	performance	testpm.test("Response	time	is	less	than	200ms",	function	()	{	pm.expect(pm.response.responseTime).to.be.below(200);});Load	TestingAPI	Load	testing	is	a
subset	of	performance	testing	that	specifically	focuses	on	how	the	API	handles	a	large	number	of	simultaneous	requests.	It	helps	determine	the	maximum	load	the	API	can	handle	before	its	performance	starts	to	decrease.Contract	TestingAPI	Contract	testing	involves	verifying	that	the	API	conforms	to	the	specifications	agreed	upon	between	different
services.	This	includes	checking	the	request	and	response	formats,	data	types,	and	required	fields.	It	ensures	that	any	changes	to	the	API	do	not	break	the	agreed-upon	contract.Example://	Example	of	a	contract	testpm.test("Response	adheres	to	contract",	function	()	{	var	jsonData	=	pm.response.json();	pm.expect(jsonData).to.have.property("id");
pm.expect(jsonData).to.have.property("name");});Benefits	of	API	TestingThere	are	lots	of	advantages	to	API	testing,	which	can	significantly	improve	the	overall	qualityand	efficiency	of	your	software	development	process.	Here	are	some	key	benefits	of	incorporating	API	testing	into	your	workflow:Quality	AssuranceAPI	testing	ensures	that	your	APIs
meet	the	required	standards	and	function	correctly.	By	testing	various	aspects,	such	as	functionality,	performance,	and	security,	you	can	catch	issues	early	and	prevent	them	from	impacting	the	end	users.	This	thorough	testing	process	helps	maintain	high-quality	standards	throughout	the	development	lifecycle.Early	Issue	Detection	and	ResolutionBy
integrating	API	testing	early	in	the	development	process,	you	can	identify	and	fix	issues	before	they	escalate.	By	reducing	the	need	for	debugging	and	troubleshooting	later,	this	proactive	strategy	saves	time	and	resources.	Early	detection	also	allows	for	faster	iterations	and	smoother	development	cycles.Resource	ConservationAutomated	API	testing
reduces	the	need	for	manual	testing	efforts,	saving	valuable	time	and	resources.	As	a	result,	your	staff	may	focus	on	more	important	tasks,	like	creating	new	features	and	enhancing	current	ones.	Additionally,	automated	tests	can	run	continuously,	providing	constant	feedback	and	ensuring	that	your	API	remains	stable	and	functional.Rapid	IterationBy
giving	quick	and	reliablefeedback	on	code	changes,	API	testing	supportsrapid	development	and	iteration.	Developers	can	quickly	detect	and	fix	issues	by	regularly	running	automated	tests.	New	features	and	upgrades	may	be	released	more	quickly	because	of	this	quick	feedback	loop,	which	speeds	up	continuous	integration	and	deployment.Improved
CollaborationAPI	testing	promotes	better	collaboration	between	development,	testing,	and	operations	teams.	Together,	the	team	members	may	more	efficiently	discover	and	resolve	problems	by	sharing	test	cases	and	results.	This	collaborative	approach	fosters	a	culture	of	quality	and	accountability,	leading	to	a	more	cohesive	and	productive
development	process.Enhanced	SecurityAn	essential	component	of	API	testing	is	security	testing.	You	can	protect	sensitive	data	and	keep	user	trust	by	carefully	testing	your	APIs	for	vulnerabilities	and	making	sure	they	are	safe	from	any	attacks.	Regular	security	testing	helps	identify	and	mitigate	risks,	ensuring	that	your	API	complies	with	industry
standards	and	regulations.API	testing	provides	comprehensive	coverage	of	various	aspects	of	your	API,	including	functionality,	performance,	and	security.	By	testing	different	scenarios	and	edge	cases,	you	can	ensure	that	your	API	performs	well	under	various	conditions	and	meets	the	needs	of	different	users.	This	comprehensive	approach	helps
deliver	a	robust	and	reliable	API.Ultimately,	the	goal	of	API	testing	is	to	provide	a	seamless	and	enjoyable	user	experience.	By	ensuring	that	your	API	works	correctly,	performs	well,	and	is	secure,	you	can	deliver	a	high-quality	product	that	meets	user	expectations.	A	well-tested	API	contributes	to	higher	user	satisfaction	and	retention.Challenges	in
API	TestingWhile	API	testing	offers	numerous	benefits,	it	also	comes	with	its	own	set	of	challenges.	You	can	implement	better	testing	procedures	and	be	more	preparedby	being	aware	of	these	challenges.	Here	are	some	common	challenges	faced	during	API	testing	and	potential	solutions	to	address	them:Complexity	of	API	EndpointsAPIs	can	have
complex	endpoints	with	various	parameters,	headers,	and	payloads.	Testing	all	possible	combinations	and	ensuring	that	every	endpoint	works	correctly	can	be	challenging.	This	complexity	increases	with	the	number	of	endpoints	and	the	intricacies	of	the	data	they	handle.Solution:	Use	comprehensive	test	cases	and	data-driven	testing	techniques	to
cover	as	many	scenarios	as	possible.	Tools	like	Postman	allow	you	to	create	parameterized	tests	and	use	data	files	to	automate	the	efficient	testing	of	multiple	combinations.Handling	Asynchronous	ProcessesMany	APIs	involve	asynchronous	processes,	such	as	background	jobs,	webhooks,	or	long-running	tasks.	Testing	these	processes	can	be	difficult
because	it	requires	checking	the	APIs	behavior	over	time	and	ensuring	that	asynchronous	events	are	handled	correctly.Solution:	Implement	test	scripts	that	can	wait	for	and	validate	asynchronous	responses.	Postman	allows	you	to	use	JavaScript	to	add	delays	or	wait	for	specific	conditions	before	proceeding	with	the	next	steps	in	your	test.Managing
DependenciesAPIs	often	depend	on	other	services,	databases,	or	external	APIs.	Testing	an	API	in	isolation	might	not	accurately	reflect	its	behavior	in	a	real-world	environment	where	these	dependencies	exist.	Managing	and	simulating	these	dependencies	during	testing	can	be	challenging.Solution:	Use	mock	servers	and	service	virtualization	to
simulate	dependent	services.	Postmans	mock	server	feature	allows	you	to	create	mock	responses	for	your	API	endpoints,	enabling	you	to	test	your	API	without	relying	on	external	dependencies.Ensuring	SecuritySecurity	is	a	critical	aspect	of	API	testing,	but	it	can	be	difficult	to	identify	all	potential	vulnerabilities.	A	number	of	security	risks,	including
injection	attacks,	data	breaches,	and	unauthorized	access,	can	affect	APIs.Solution:	Implement	comprehensive	security	testing	that	includes	authentication,	authorization,	and	penetration	testing.	Tools	like	Postman	can	help	you	automate	security	tests	and	check	for	common	vulnerabilities	by	integrating	with	security	testing	tools.	APIs	are	often
updated	with	new	features,	changes	to	existing	endpoints,	or	bug	fixes.	Keeping	your	tests	up-to-date	with	these	changes	can	be	challenging,	especially	in	a	fast-paced	development	environment.Solution:	Integrate	your	API	testing	with	your	CI/CD	pipeline	to	ensure	tests	are	automatically	updated	and	run	with	every	code	change.	Postmans
integration	with	CI/CD	tools	allows	you	to	automate	test	execution	and	ensure	your	tests	are	always	in	sync	with	your	API	changes.API	Testing	Best	PracticesYou	can	improve	the	effectiveness	of	your	API	testing	by	following	the	best	practices.	These	practices	help	ensure	that	your	tests	are	thorough,	reliable,	and	maintainable,	leading	to	higher-
quality	APIs	and	a	smoother	development	process.	Here	are	some	key	best	practices	for	API	testing:Create	a	Dedicated	Testing	EnvironmentHaving	a	dedicated	testing	environment	helps	you	test	your	APIs	without	affecting	the	production	system.	This	testing	environment	should	mimic	the	production	environment	as	closely	as	possible,	including	the
same	configurations,	databases,	and	network	conditions.Automate	Your	API	TestsAutomating	API	tests	allows	you	to	run	them	frequently	and	consistently,	catching	issues	early	and	ensuring	that	new	changes	do	not	introduce	regressions.	Use	tools	like	Postman	to	create	and	automate	your	tests.	Automated	tests	can	be	integrated	into	your	CI/CD
pipeline	to	run	with	every	code	change,	providing	immediate	feedback.Run	Tests	Throughout	the	API	LifecycleTesting	should	not	be	a	one-time	activity.	Run	your	tests	throughout	the	API	lifecycle,	from	development	and	staging	to	production.	Continuous	testing	helps	catch	issues	at	every	stage	and	ensures	that	your	API	remains	reliable	and
functional	over	time.	Creating	reusable	subtests	for	common	test	scenarios	can	save	time	and	effort.	For	example,	if	multiple	endpoints	require	authentication,	write	a	reusable	test	for	the	authentication	process.	This	practice	reduces	redundancy	and	makes	it	easier	to	maintain	your	test	suite.Document	API	RequestsDocumenting	your	API	requests
helps	you	and	your	team	understand	the	purpose	and	functionality	of	each	test.	Postman	provides	excellent	documentation	features	that	allow	you	to	create	interactive	and	detailed	API	documentation.	This	documentation	can	be	shared	with	your	team	and	stakeholders,	improving	communication	and	collaboration.Practice	API	Security	TestingInclude
security	testing	as	part	of	your	API	testing	strategy.	Test	for	common	security	issues	like	SQL	injection,	cross-site	scripting	(XSS),	and	unauthorized	access.	Ensure	that	your	API	handles	authentication	and	authorization	correctly.	Postman	can	help	automate	these	security	tests	and	integrate	them	into	your	regular	testing	process.API	Load	testing
evaluates	how	your	API	performs	under	heavy	traffic.	It	helps	identify	bottlenecks	and	ensure	that	your	API	can	handle	the	expected	load.	Use	tools	like	Postman	to	simulate	high	volumes	of	requests	and	measure	performance	metrics	such	as	response	time	and	throughput.What	is	Postman?Postman	is	a	tool	for	developing	and	testing	APIs.	Its
features	simplify	the	process	and	make	it	more	efficient	for	various	team	members	involved	in	software	development.Here	are	the	key	features	of	Postman:User-Friendly	Interface:	Create	and	manage	API	requests	easily	with	a	visual	interface.Collections:	Group	related	API	requests	into	collections	to	keep	things	organized.Environment	Variables:	Use
variables	for	different	environments	like	development,	staging,	and	production	to	streamline	testing.Automation	with	Newman:	Run	Postman	collections	from	the	command	line,	which	is	useful	for	integrating	with	CI/CD	pipelines.Mock	Servers:	Create	mock	responses	to	simulate	APIs	for	testing	purposes.Monitoring:	Schedule	and	run	API	tests
regularly,	get	alerts	on	failures,	and	ensure	API	performance.Documentation:	Generate	and	share	detailed	API	documentation	directly	from	your	Postman	collections.Why	Use	Postman	for	API	Testing?Postman	is	a	popular	choice	for	API	testing	for	several	reasons.	Heres	why	it	stands	out:Ease	of	UsePostmans	intuitive	interface	makes	it	easy	to	create
and	manage	API	requests.	You	can	quickly	set	up	new	requests,	add	parameters,	headers,	and	body	data,	and	send	them	to	see	the	responses.	Because	of	its	simplicity,	even	people	who	are	not	familiar	with	API	testing	can	use	it.Comprehensive	FeaturesPostman	offers	a	lot	of	features	that	cover	all	aspects	of	API	testing:Automated	Testing:	With
Postman,	you	can	write	test	scripts	in	JavaScript	to	automate	your	API	tests.	This	saves	time	and	ensures	consistency.Collaboration:	Postman	allows	teams	to	share	collections,	environments,	and	test	results,	fostering	better	collaboration.Environment	Management:	Easily	manage	different	environments	(e.g.,	development,	staging,	production)	with
environment	variables.Mock	Servers:	Create	mock	servers	to	simulate	API	responses	and	test	your	applications	without	needing	the	actual	backend.Continuous	Integration:	Integrate	Postman	tests	into	your	CI/CD	pipelines	using	Newman,	ensuring	your	APIs	are	continuously	tested.How	to	Use	Postman	to	Test	APIsTesting	APIs	with	Postman	is
straightforward,	thanks	to	its	user-friendly	interface	and	robust	features.	Heres	a	step-by-step	guide	on	how	to	get	started:Step	1:	Sign	Up	for	a	Postman	AccountFirst,	download	and	install	Postman	if	you	havent	already.	You	can	sign	up	for	a	free	account,	which	allows	you	to	save	your	requests	and	collections	in	the	cloud.Step	2:	Create	a	New
RequestOpen	Postman	and	click	the	New	button.Select	your	request	protocol	to	create	a	new	API	request	(We	will	use	HTTP	for	this	guide).Name	your	request	and	choose	a	collection	to	save	it	in.Step	3:	Enter	Request	Methods	and	ParametersChoose	the	HTTP	method	(GET,	POST,	PUT,	DELETE,	etc.)	from	the	dropdown.Enter	the	URL	for	your	API
endpoint.If	needed,	add	parameters,	headers,	and	body	data.	You	can	do	this	in	the	respective	tabs	under	the	URL	field.Step	4:	Send	the	RequestClick	the	Send	button	to	send	your	API	request.Postman	will	display	the	response,	including	the	status	code,	headers,	and	body.Step	5:	Analyze	the	ResponsesCheck	the	status	code	to	ensure	the	API	request
was	successful	(e.g.,	200	OK).Review	the	response	body	to	verify	the	returned	data.Check	the	headers	for	additional	information	about	the	response.Step	6:	Create	a	Postman	CollectionCollections	allow	you	to	group	related	API	requests.To	create	a	new	collection,	click	the	New	button	and	select	Collection.Name	your	collection	and	add	a	description
if	needed.Step	7:	Add	Requests	to	the	CollectionSave	your	individual	requests	into	the	appropriate	collection.This	helps	keep	your	tests	organized	and	easy	to	manage.Step	8:	Use	the	Postman	Collection	RunnerThe	Collection	Runner	allows	you	to	run	all	the	requests	in	a	collection	sequentially.Open	the	Collection	Runner	by	clicking	on	the	Runner
button	in	the	bottom-right	corner.Select	the	collection	you	want	to	run	and	configure	any	necessary	settings	(e.g.,	environment,	iterations).Click	Schedule	Run	to	execute	the	requests.	Postman	will	display	the	results	for	each	request	in	the	collection.Postman	Automation:	How	to	Do	It?Automating	your	API	tests	with	Postman	can	save	time	and	ensure
consistency	in	your	testing	process.Heres	a	step-by-step	guide	on	how	to	set	up	automated	tests	in	Postman:Step	1:	Select	the	Scripts	TabWithin	your	API	request	in	Postman,	navigate	to	the	Scripts	tab	and	select	Post-response.This	tab	allows	you	to	write	JavaScript	code	to	perform	various	checks	on	the	API	response.Step	2:	Write	Test	ScriptsUse
JavaScript	along	with	Postmans	pm	object	to	write	your	tests.Common	assertions	include	checking	status	codes,	response	times,	and	response	bodies.Step	3:	Run	Automated	Tests	as	a	CollectionSave	your	requests	with	tests	into	a	collection.Open	the	Collection	Runner	by	clicking	the	Runner	button	in	the	bottom-right	corner.Select	the	collection	you
want	to	run.Configure	any	necessary	settings,	such	as	environment	and	number	of	iterations.Click	Schedule	Run	to	execute	the	tests.	The	Collection	Runner	will	display	the	results	for	each	request.Step	4:	Integrate	with	CI/CDUse	Postman	CLI	to	run	collections	from	the	command	line.	This	allows	you	to	integrate	your	tests	into	CI/CD	pipelines.Step
5:	Monitor	Test	ResultsPostmans	monitoring	feature	allows	you	to	schedule	and	run	tests	at	regular	intervals.Set	up	monitors	to	run	specific	collections	and	receive	alerts	on	test	failures.This	helps	ensure	your	API	remains	functional	and	performs	well	over	time.Incorporating	Postman	into	CI/CD	PipelinesIntegrating	Postman	into	your	CI/CD
(Continuous	Integration/Continuous	Deployment)	pipeline	allows	you	to	automate	your	API	tests,	ensuring	that	they	run	with	every	build	or	deployment.	This	continuous	testing	approach	helps	catch	issues	early	and	maintain	the	reliability	of	your	APIs.	Heres	how	you	can	incorporate	Postman	into	your	CI/CD	pipeline:Step	1:	Set	Up	Your
CollectionEnsure	that	your	API	requests	and	tests	are	organized	into	collections	within	Postman.	Collections	allow	you	to	manage	and	run	related	API	tests	together.Step	2:	Use	the	Collection	RunnerPostmans	Collection	Runner	allows	you	to	execute	a	series	of	requests	in	a	collection.	You	can	access	the	Collection	Runner	by	clicking	the	Runner
button	in	the	bottom-right	corner	of	the	Postman	app.	Configure	your	collection	to	include	all	necessary	requests	and	tests.Step	3:	Automate	with	Postman	CLIPostman	provides	a	command-line	interface	(CLI)	called	Postman	CLI	for	running	collections	from	the	terminal.	This	is	useful	for	integrating	with	CI/CD	tools.Install	Postman	CLI:	First,
download	and	install	the	Postman	CLI.Authenticate:	Use	the	provided	command	to	log	in	with	your	API	key:postman	login	--with-api-key	Run	the	Collection:	Use	the	following	command	to	run	your	collection:postman	collection	run	Step	4:	Integrate	with	CI/CD	ToolsMost	CI/CD	tools	like	Jenkins,	GitLab	CI,	CircleCI,	and	Azure	DevOps	support	running
shell	commands	as	part	of	the	build	process.	You	can	add	the	Postman	CLI	commands	to	your	pipeline	configuration	to	run	your	API	tests	automatically.Step	5:	Monitor	Test	ResultsPostmans	monitoring	feature	allows	you	to	schedule	and	run	tests	at	regular	intervals,	independent	of	your	CI/CD	pipeline.	Set	up	monitors	to	run	specific	collections	and
receive	alerts	on	test	failures.	This	helps	ensure	your	API	remains	functional	and	performs	well	over	time.Postman	Best	PracticesFollowing	bestpractices	will	help	you	get	the	most	out	of	Postman	and	ensure	your	API	testing	is	successful	and	efficient.	Here	are	some	key	practices	to	enhance	your	use	of	Postman:Organize	Collections	and
EnvironmentsUse	Collections:	Group	related	requests	into	collections	based	on	functionality	or	modules.	This	makes	it	easier	to	manage	and	run	tests.Use	Folders:	Within	collections,	organize	requests	into	folders	to	keep	things	tidy,	especially	for	large	projects.Naming	Conventions:	To	make	collections,	folders,	and	requests	easy	to	identify,	use
consistent	and	obvious	naming	conventions.Use	Environment	VariablesDefine	Variables:	Create	environment	variables	for	items	like	base	URLs,	API	keys,	and	tokens.	This	allows	you	to	switch	environments	(development,	staging,	production)	without	changing	the	actual	requests.Pre-request	Scripts:	Use	pre-request	scripts	to	set	up	environment
variables	dynamically	before	a	request	is	sent.Write	Test	ScriptsReusable	Tests:	Write	reusable	test	scripts	that	can	be	included	in	multiple	requests.Assertions:	Use	robust	assertions	to	check	various	aspects	of	the	response,	such	as	status	codes,	headers,	and	body	content.Version	ControlVersion	Collections:	Use	version	control	systems	(e.g.,	Git)	to
track	changes	to	your	Postman	collections	and	share	them	with	your	team.Postman	API:	Leverage	the	Postman	API	to	programmatically	manage	your	collections	and	environments,	integrating	them	with	your	version	control	workflows.DocumentationGenerate	Documentation:	Use	Postman	to	generate	and	share	documentation	for	your	API	collections.
This	makes	it	easier	for	team	members	and	external	users	to	understand	and	use	your	APIs.Annotations:	Add	detailed	descriptions	and	comments	to	your	requests	and	test	scripts	for	better	clarity.Practice	API	Security	TestingAuthorization:	Test	various	authorization	mechanisms	(e.g.,	OAuth,	API	keys)	to	ensure	they	are	implemented
correctly.Vulnerability	Testing:	Check	for	common	security	vulnerabilities	like	SQL	injection,	XSS,	and	improper	error	handling.Simulate	Load:	Use	tools	like	Postman	and	Newman	to	simulate	high	volumes	of	requests	and	assess	performance	under	load.Monitor	Performance:	Track	response	times	and	error	rates	to	identify	bottlenecks	and	optimize
your	APIs	performance.Postman	Monitors	and	Their	BenefitsPostman	Monitors	allow	you	to	automate	the	execution	of	your	API	tests	at	scheduled	intervals.	This	feature	is	essential	for	continuous	monitoring	of	your	APIs	to	ensure	they	remain	functional	and	performant	over	time.	Heres	how	Postman	Monitors	work	and	the	benefits	they	provide:How
Postman	Monitors	WorkSet	Up	a	Monitor:Go	to	the	Postman	app	and	select	the	collection	you	want	to	monitor.Click	on	the	Monitors	tab	and	then	Create	a	Monitor.Configure	the	monitor	by	setting	the	schedule	(e.g.,	every	hour,	daily)	and	selecting	the	environment	you	want	to	use.Schedule	Runs:Define	the	frequency	of	the	test	runs,	such	as	hourly,
daily,	or	weekly.Postman	will	automatically	execute	the	tests	at	the	specified	intervals.Monitor	Execution:Monitors	execute	your	predefined	tests,	simulating	real-world	usage	of	your	API.They	check	for	performance,	functionality,	and	reliability	issues.Receive	Alerts:Set	up	alerts	to	notify	you	if	any	tests	fail.	You	can	receive	alerts	via	email.Detailed
reports	are	generated	for	each	run,	showing	the	status	of	each	test	and	any	errors	encountered.Benefits	of	Using	Postman	MonitorsContinuous	TestingEarly	Detection:	Monitors	help	detect	issues	early	before	they	impact	your	users.Automated	Testing:	Continuous	testing	without	manual	intervention,	freeing	up	resources	for	other	tasks.Performance
MonitoringResponse	Times:	Monitors	track	response	times	to	identify	performance	degradation.Scalability:	Ensure	your	API	can	handle	the	expected	load	consistently.ReliabilityUptime	Tracking:	Monitors	help	ensure	your	API	is	available	and	reliable.Error	Detection:	Quickly	identify	and	address	errors	or	failures	in	your	API.SecurityRegular	Security
Checks:	Monitors	can	run	security	tests	at	regular	intervals	to	ensure	ongoing	protection.Compliance:	Ensure	your	API	continues	to	meet	security	standards	and	regulations.Detailed	ReportingRun	Reports:	Each	monitor	run	generates	a	detailed	report	showing	the	results	of	each	test.Trends	and	Insights:	Analyze	trends	over	time	to	identify	patterns
and	potential	issues.Alerts	and	NotificationsReal-Time	Alerts:	Receive	immediate	notifications	if	any	test	fails.Customizable	Notifications:	Configure	alerts	to	suit	your	needs,	choosing	how	and	where	you	receive	them.Setting	Up	a	Monitor	ExampleHeres	a	quick	example	of	setting	up	a	Postman	Monitor:Create	a	Monitor:Go	to	your	collection,	click	on
the	Monitors	tab,	and	select	Create	a	Monitor.Name	your	monitor	and	choose	the	environment	(e.g.,	development,	production).Configure	Schedule:Set	the	frequency	(e.g.,	every	30	minutes).Choose	the	time	zone	and	start	time.Set	Up	Alerts:Configure	email	notifications	for	test	failures.Review	and	Save:Review	your	settings	and	save	the
monitor.Writing	Tests	in	PostmanThe	Scripts	TabRecently	the	Tests	tab	has	been	merged	into	the	Scripts	tab	in	Postman,	and	you	can	write	tests	in	the	Post-response	part	of	the	Scripts	tab.Best	Practices	for	Writing	TestsBy	following	some	best	practices,	you	can	make	your	tests	better	and	more	understandable	so	that	your	tests	become	more	robust
and	reliable.	Lets	check	out	some	of	these	best	practices:1.	Descriptive	and	Clear	Test	NamesWhy	Its	Important:	Clear	names	make	it	easier	to	understand	what	each	test	checks	at	a	glance,	especially	when	reviewing	test	results	or	sharing	tests	with	colleagues.Example:	Instead	of	naming	a	test	Test	1	or	Status	Check,	use	descriptive	names	like
Verify	Status	Code	is	200	for	User	Endpoint	or	Ensure	Response	Time	is	Below	500ms.2.	Testing	One	Concern	Per	TestWhy	Its	Important:	Focusing	on	one	assertion	per	test	simplifies	troubleshooting	and	understanding	test	results.	If	a	test	fails,	you	know	just	what	went	wrong.Example:	Separate	them	instead	of	combining	status	code	and	response
time	checks	in	one	test://	Test	for	status	codepm.test("Status	code	is	200",	function	()	{pm.response.to.have.status(200);});	//	Test	for	response	time	pm.test("Response	time	is	less	than	500ms",	function	()	{	pm.expect(pm.response.responseTime).to.be.below(500);	});	```3.	Use	Assertive	LanguageWhy	Its	Important:	Assertive	language	in	tests	makes
them	more	readable	and	intention-driven.	It	clarifies	the	purpose	of	the	test.Example:	Use	assertive	phrases	like	expect(response).to.contain...	or	response.should.have...,	clearly	stating	the	tests	expectations.4.	Organize	Tests	LogicallyWhy	Its	Important:	Grouping	related	tests	or	organizing	them	logically	can	make	your	testing	suite	more
understandable	and	maintainable.Example:	If	testing	various	aspects	of	a	user	API,	group	tests	related	to	user	creation,	user	data	retrieval,	and	user	deletion	together.5.	Handle	Different	Test	ScenariosWhy	Its	Important:	Testing	only	the	happy	path	can	leave	critical	bugs	in	edge	cases.	Its	essential	to	test	various	scenarios,	including	potential	error
conditions.Example:	Alongside	testing	a	successful	API	call,	write	tests	for	scenarios	like	invalid	inputs,	unauthorized	access,	or	server	errors.//	Test	for	invalid	inputpm.test("Response	for	invalid	input	is	400",	function	()	{	pm.expect(pm.response.code).to.eql(400);});6.	Maintainability	and	ReusabilityWhy	Its	Important:	Tests	should	be	easy	to	update
and	reusable	for	different	scenarios.	This	practice	saves	time	and	effort	in	the	long	run.Example:	Create	reusable	functions	for	common	test	assertions.	Call	these	functions	with	different	parameters	as	needed	rather	than	writing	the	same	code	in	multiple	tests.7.	Commenting	and	DocumentationWhy	Its	Important:	Good	comments	and	documentation
make	it	easier	for	others	(and	your	future	self)	to	understand	the	purpose	and	mechanics	of	your	tests.Example:	Add	comments	to	clarify	complex	logic	or	the	reason	behind	specific	test	cases,	especially	when	testing	less	obvious	or	intricate	API	parts.Using	expect	for	AssertionsIntroduction	to	Chai	LibraryChai	is	an	assertion	library	used	in	JavaScript
for	test-driven	development	(TDD)	and	behaviour-driven	development	(BDD).	In	API	testing	using	Postman,	Chai	offers	a	set	of	assertions	for	validating	the	API	requests	and	responses	by	ensuring	they	meet	the	expected	criteria.Purpose	of	Assertion	LibrariesAn	assertion	library	like	Chai	serves	a	fundamental	role	in	testing:Verification:	It	provides	a
systematic	way	to	check	whether	the	output	of	a	code	block	(or,	in	this	case,	an	API	response)	matches	the	expected	result.Readability:	Chais	syntax	is	designed	to	be	human-readable,	making	tests	easier	to	write	and	understand.Robust	Testing:	Covering	a	wide	range	of	assertion	types	allows	testers	to	write	comprehensive	tests	covering	various
aspects	of	the	API	response.Using	expect	in	PostmanWithin	Postman,	expect	statements	allow	you	to	perform	detailed	checks	on	your	response	data.	For	example:pm.test("Response	should	be	an	object",	function	()	{	pm.expect(pm.response.json()).to.be.an("object");});	Status	Code:	Ensure	your	API	returns	the	correct	status	code,	indicating	the
requests	success	or	failure.Response	Body:	Validate	the	structure	and	data	of	the	response	body	to	ensure	your	API	returns	the	expected	data.Response	Headers:	Checking	headers	can	verify	content	type,	caching	rules,	and	more.Response	Time:	Ensuring	your	API	responds	in	a	timely	manner	is	crucial	for	performance.Using	pm.response	in	Postman
for	API	Testingpm.response	is	an	important	object	in	Postman	scripting	that	gives	you	much	information	about	the	response	returned	from	your	API	request.	By	using	pm.response	correctly	and	effectively,	you	can	improve	your	API	testing	because	this	object	allows	you	to	access	and	validate	various	aspects	of	the	response	data.	Heres	a	more
detailed	look	at	utilizing	pm.response	in	your	tests:Accessing	Response	Attributespm.response	contains	several	properties	and	methods	that	give	you	access	to	different	parts	of	the	API	response,	such	as	the	status	code,	response	time,	headers,	and	body.	Heres	how	you	can	use	them:Status	Code:	Access	the	status	code	of	the	response	to	verify	if	the
API	request	was	successful.let	statusCode	=	pm.response.code;pm.expect(statusCode).to.eql(200);Response	Time:	Check	how	long	the	API	took	to	respond,	which	is	crucial	for	performance	testing.let	responseTime	=	pm.response.responseTime;pm.expect(responseTime).to.be.below(500);	//	time	in	millisecondsHeaders:	Examine	the	response	headers
for	important	metadata	like	content	type,	caching	policies,	and	more.let	contentTypeHeader	=	pm.response.headers.get("Content-Type");pm.expect(contentTypeHeader).to.include("application/json");Body:	The	response	body	contains	the	data	returned	by	the	API.	You	can	parse	this	data	and	make	assertions	based	on	your	APIs	expected	output.let
responseBody	=	pm.response.json();	//	For	JSON	responsepm.expect(responseBody).to.have.property("name",	"John	Doe");Using	pm.response	for	Complex	ValidationsBeyond	simple	assertions,	pm.response	can	be	used	for	more	complex	validations:Validating	Response	Structure:	Ensure	the	response	body	follows	a	specific	schema	or
structure.Conditional	Testing:	Perform	different	tests	based	on	certain	response	conditions.	For	example,	if	the	status	code	is	200,	check	one	set	of	criteria;	if	its	400,	check	another.Dynamic	Data	Validation:	Sometimes,	responses	contain	dynamic	data	(like	timestamps	or	unique	IDs).	Use	pm.response	to	validate	the	format	of	these	dynamic	elements
without	hardcoding	the	values.Best	Practices	with	pm.responseReadability:	Keep	your	tests	readable	and	straightforward.	Complex	logic	can	make	tests	more	complicated	to	understand	and	maintain.Error	Handling:	Include	error	handling	in	your	tests.	For	example,	check	if	the	response	body	is	present	before	trying	to	parse	it.Consistency:	Be
consistent	in	how	you	use	pm.response	across	different	tests.	This	consistency	helps	in	maintaining	and	scaling	your	test	suite.Validation	ExamplesValidating	Response	Status	CodeValidate	single	status	code:pm.test("the	endpoint	returns	the	expected	status	code",	()	=>	{	//	change	200	to	the	response	code	you	expect	const	expectedStatusCode	=
200;	pm.response.to.have.status(expectedStatusCode);});Validate	multiple	status	codes://	change	200	or	201	to	the	response	code	you	expectpm.test("Status	code	is	200	or	201",	function	()	{	pm.expect(pm.response.code).to.be.oneOf([200,	201]);});Validating	Response	Time//	change	500	to	the	expected	response	timepm.test("Response	time	is	less
than	500ms",	function	()	{	pm.expect(pm.response.responseTime).to.be.below(500);});	pm.test("Content-Type	is	application/json",	function	()	{	pm.response.to.have.header("Content-Type",	"application/json");});Validating	Response	BodyPostman	test	to	check	field	value	in	responseWe	can	validate	the	value	of	both	id	and	name	fields	of	the	using	the
test	below.pm.test("API	response	contains	the	expected	fields",	()	=>	{	const	response	=	pm.response.json();	//	the	line	below	checks	value	of	the	id	field	is	1	(number).	pm.expect(response).to.have.property("id",	1);	//	the	line	below	checks	value	of	the	name	field	is	Rick	Sanchez	(string).	pm.expect(response).to.have.property("name",	"Rick
Sanchez");});Test	if	Response	Body	matches	schemaTesting	if	the	response	body	matches	a	specific	schemapm.test("Body	matches	schema",	function	()	{	let	schema	=	{	type:	"object",	properties:	{	id:	{	type:	"integer"	},	name:	{	type:	"string"	},	status:	{	type:	"string"	},	species:	{	type:	"string"	},	type:	{	type:	"string"	},	gender:	{	type:	"string"	},
origin:	{	type:	"object",	properties:	{	name:	{	type:	"string"	},	url:	{	type:	"string"	},	},	required:	["name",	"url"],	//	Added	required	property	for	origin	},	location:	{	type:	"object",	properties:	{	name:	{	type:	"string"	},	url:	{	type:	"string"	},	},	required:	["name",	"url"],	//	Added	required	property	for	location	},	image:	{	type:	"string"	},	episode:	{	type:
"array",	items:	{	type:	"string"	},	},	url:	{	type:	"string"	},	created:	{	type:	"string"	},	},	required:	["id",	"name",	"status",	"species",	"type",	"gender",	"origin",	"location",	"image",	"episode",	"url",	"created",],	};	pm.expect(pm.response.json()).to.be.jsonSchema(schema);});Test	if	nested	field	value	is	available	in	responseThe	script	below	step	works	for
fields	at	the	root	of	the	response.	What	if	we	wanted	to	test	the	name	field	under	the	origin	field.	We	can	tweak	the	script	to	support	fields	at	any	level.pm.test("API	response	contains	the	expected	fields",	()	=>	{	const	response	=	pm.response.json();	//	the	line	below	checks	value	of	the	id	field	is	1	(number).
pm.expect(response).to.have.nested.property("id",	1);	//	the	line	below	checks	value	of	the	name	field	is	Rick	Sanchez	(string).	pm.expect(response).to.have.nested.property("name",	"Rick	Sanchez");	//	the	line	below	checks	value	of	the	origin.name	field	is	Earth	(C-137)	(string).	pm.expect(response).to.have.nested.property("origin.name",	"Earth	(C-
137)");});Check	nested	array	value	in	responseWe	can	take	it	further	and	use	the	same	technique	to	validate	the	value	of	items	in	the	array.	For	example,	we	can	use	the	script	below	to	check	the	value	of	the	second	item	in	the	episode	array	of	the	endpoint.pm.test("API	response	contains	the	expected	fields",	()	=>	{	const	response	=
pm.response.json();	//	the	line	below	checks	the	value	of	the	episode	field	at	index	0	is	"	.	pm.expect(response).to.have.nested.property("episode.0",	");});No	code	API	testing	using	TestfullyTestfully	is	a	leading	API	testing	&	monitoring	tool	and	a	great	Postman	alternative	for	API	testing.	The	below	video	is	a	quick	demo	of	Testfully	and	how	you	can
use	it	to	test	your	APIs	without	writing	code.	ConclusionAs	you	saw,	you	can	significantly	improve	your	API	testing	process	by	using	JavaScript	in	your	Postman	workflow.	The	examples	and	practices	that	we	went	through	can	help	you	develop	comprehensive	and	reliable	API	tests.	Try	them	and	tailor	them	to	fit	your	specific	testing	needs.	Happy
testing!	Frequently	Asked	Questions	We	got	an	answer	for	your	questions	What	is	API	testing?	API	testing	is	a	type	of	software	testing	that	focuses	on	verifying	that	APIs	function	as	expected.	It	involves	sending	requests	to	API	endpoints	and	analyzing	the	responses	to	ensure	they	meet	the	expected	outcomes,	covering	aspects	like	functionality,
performance,	and	security.	Why	is	API	testing	important?	API	testing	is	essential	because	it	ensures	that	your	APIs	work	correctly	and	meet	the	required	standards.	It	helps	catch	issues	early	in	the	development	process,	improves	quality	assurance,	enhances	security,	and	ensures	the	performance	and	reliability	of	APIs.	How	do	you	use	Postman	for
API	testing?	To	use	Postman	for	API	testing,	create	and	manage	API	requests,	organize	them	into	collections,	use	environment	variables	for	different	settings,	write	test	scripts	in	the	"Tests"	tab,	and	automate	the	tests	using	Postman	CLI	or	integrate	them	into	CI/CD	pipelines.	What	are	Postman	Collections?	Postman	Collections	are	groups	of	related
API	requests	that	you	can	save	and	organize	together.	Collections	help	manage	and	run	tests	efficiently,	keeping	your	API	testing	organized	and	scalable.	How	can	I	automate	API	tests	with	Postman?	You	can	automate	API	tests	in	Postman	by	writing	test	scripts	in	JavaScript,	using	the	Postman	Collection	Runner	to	run	collections,	and	integrating
Postman	CLI	with	CI/CD	tools	like	Jenkins,	GitLab	CI,	or	CircleCI	to	run	tests	automatically	with	each	build	or	deployment.	What	is	the	Postman	CLI?	The	Postman	CLI	is	a	command-line	tool	that	allows	you	to	run	Postman	collections	directly	from	the	terminal.	It's	useful	for	integrating	API	tests	into	CI/CD	pipelines	and	automating	the	testing
process.	Can	Postman	be	used	for	performance	testing?	While	Postman	can	be	used	for	basic	performance	testing	by	measuring	response	times	and	simulating	load	with	multiple	iterations,	it	is	not	specifically	designed	for	extensive	performance	testing.	For	more	detailed	performance	testing,	tools	like	Apache	JMeter	or	Gatling	are	recommended.
What	are	Postman	Monitors?	Postman	Monitors	are	a	feature	that	allows	you	to	schedule	and	run	API	tests	at	regular	intervals.	Monitors	help	ensure	your	APIs	are	always	functional	and	performant	by	providing	continuous	testing	and	alerts	for	any	test	failures.	How	do	environment	variables	work	in	Postman?	Environment	variables	in	Postman	allow
you	to	define	and	manage	variables	for	different	environments,	such	as	development,	staging,	and	production.	This	makes	it	easier	to	switch	settings	without	changing	the	actual	requests,	ensuring	flexibility	and	efficiency	in	testing.	What	are	some	best	practices	for	API	testing	with	Postman?	Best	practices	for	API	testing	with	Postman	include
organizing	requests	into	collections,	using	environment	variables,	writing	clear	and	reusable	test	scripts,	automating	tests,	integrating	with	CI/CD	pipelines,	and	regularly	monitoring	API	performance	using	Postman	Monitors.	Design,	secure,	and	ship	higher-quality	APIsall	in	one	platform.Learn	more	Prototype,	document,	test,	and	demo	all	your	APIs
in	one	place.	Get	early	feedback	by	having	conversations	in	the	context	of	any	APIinternal,	public,	or	partnernot	scattered	across	tools.Transform	API	development	from	an	individual	to	a	team	sport.	Get	to	that	first	API	call	faster,	improve	developer	onboarding,	and	increase	API	discoverability.Open	and	extensible	by	design,	collections	in	Postman
expedite	self-serve	API	consumption	across	the	org,	so	devs	can	start	testing	APIs	and	building	workflows.Organize	API	collections	in	to	workspaces	where	API	changes	can	be	seen	in	real-time,	by	everyone.Automatically	create	documentation	on	how	to	interact	with	APIs	for	faster	onboarding,	consistency	across	teams,	and	strong	partner
collaboration.Move	fast	to	build	quality	APIswithout	breaking	anythingby	managing	every	phase	of	the	API	workflow,	together,	on	a	single	platform.Avoid	building	from	scratch	or	writing	lengthy	descriptions	about	API	issues	by	storing	and	sharing	APIs	in	Collections.Seamlessly	update,	edit,	deprecate,	and	communicate	changes	on	APIs	so	even	the
simplest	API	change	doesn't	bring	havoc	to	your	workflow.Use	AI	in	Postman	to	write	test	scripts	from	scratch,	generate	tests	for	an	entire	collection,	or	visualize	API	responses	with	graphs	to	better	understand	API	output.

Salesforce	rest	api	postman	example.	Postman	api	key	authentication	example.	Dummy	api	for	testing	in	postman	example.	Rest	api	upload	file	example	postman.	Postman	example	api	test.	Api	chaining	in

postman	with	example.	Postman	automation	api	testing	example.	Postman	example	api	post.	Postman	api	collection	example.	Postman	jira	api	example.	Postman	mock	api	example.	Postman	tutorial	for	beginners
with	api	testing	example.	Postman	rest	api	example.	Splunk	rest	api	search	postman	example.	Postman	api	documentation	example.

