
	

https://tivafav.bebopim.com/129373236765923287364872587194482842699467?wezemiwokitaminekomowasabozibuvibiguxikadelutibogadimit=vaniwejulimowagisikemawuxixezuwizesutanejikikagemasuxojutebodakugexojowanitipumusefufawitimewimemasuwajukirefebimomegibejigeterewurabanowidatanilazoguvaguvevejubobixoluxitejudidizudopijekugowinotexupatedudug&utm_term=how+cmp+works+in+assembly&jaragigawozoxinexinasubajiwexuwakopuleletabarajabijodawegoxilatiwovetunenut=pepefalawesiwoduwufuramuxezurosibanidipisikofukobojagopixajumubonavevoxunokabijisikabutozadamapuwifafemewoso

How	cmp	works	in	assembly

Yes,	that's	correct,	except	for	*x	in	your	C	code	and	missing	assembly	code.	In	C,	you	define	variable	types	(signed/unsigned)	upon	declaration,	such	as	int	x	or	unsigned	int	x,	whereas	in	assembly,	the	distinction	between	signed	and	unsigned	variables	is	made	through	different	conditional	jumps:	For	signed	variables,	jg/jl/jge/jle;	for	unsigned
variables,	ja/jb/jae/jbe.	I'm	trying	to	understand	assembly	to	solve	a	puzzle,	but	I	encountered	instructions:	cmpl	$0x7,	0x14(%rsp);	ja	0x401230.	I	think	it's	comparing	the	value	of	0x14(%rsp)	(-7380),	which	is	unsigned,	and	if	it's	greater	than	7,	then	jump,	which	might	not	be	what	you	want	since	(unsigned)-7380	>	7	would	indeed	jump.	It	seems
you're	flipping	arguments	or	jumping	with	an	incorrect	condition.	Regarding	your	assembly	program,	I'll	focus	on	the	comparison.	The	cmp	command	compares	two	operands:	AX	and	BX.	Since	it's	signed	division,	ax/bx	is	stored	in	dx,	then	decremented	to	zero.	In	this	context,	the	comparison	works	by	performing	a	subtraction	of	bx	from	ax,	setting
flags	(OF,	SF,	ZF,	AF,	PF,	CF)	according	to	the	result.	In	general,	your	program	prints	a	number.	The	comparison	instructions	in	x86	assembly	language,	such	as	CMP	and	CMN,	perform	operations	on	two	operands	but	do	not	store	the	result	directly.	Instead,	they	update	flags	that	can	be	used	for	conditional	branching.	The	CMP	instruction	calculates
DESTINATION	-	SOURCE,	setting	flags	based	on	this	subtraction.	For	instance,	if	comparing	a	register	to	zero	with	CMP	eax,	0,	the	result	is	equal	if	the	register	holds	a	non-zero	value	and	false	otherwise.	CMN	is	similar	but	allows	comparison	against	small	negative	values.	The	TEQ	instruction	is	analogous	to	TST	but	uses	an	EOR	operation	instead
of	AND,	making	it	useful	for	checking	bit	equivalences	without	affecting	the	Carry	flag.	TST	itself	performs	a	bitwise	AND	between	two	operands,	updating	flags	based	on	this	result,	and	can	be	used	to	test	specific	bits	in	data.	To	access	the	results	of	these	operations,	one	typically	relies	on	the	condition	flags	set	by	CMP	or	TEQ/TST	instructions.	In
Intel	syntax,	CMP	is	often	represented	as	cmp	dest,	src,	while	AT&T	syntax	uses	cmp	$src,	%dest.	Understanding	the	behavior	of	these	instructions	and	their	implications	for	conditional	jumps	in	x86	assembly	is	crucial	for	effective	programming	in	this	environment.	CMP	instructions	work	similarly	to	SUB	instructions	but	without	changing	operands,
instead	subtracting	source	operand	from	destination	operand	and	updating	flags	only.	For	example:	CMP	AX,	BX	;	Performs	(AX-BX)	and	updates	flags,	leaving	source	and	destination	unchanged.	Unlike	jumps	alone,	the	comparison	is	meaningless	as	there's	no	decision-making	involved	if	you're	not	taking	an	action	based	on	it.	Jumps	are	used	with
conditional	jump	instructions	to	take	decisions.	There	are	two	main	types	of	jump	instructions:	unconditional	and	conditional.	Unconditional	jumps	force	the	processor	to	start	executing	instructions	from	a	specific	address	unconditionally,	as	shown	in	this	code	example:	JMP	03h.	This	assigns	the	address	0003	to	the	instruction	pointer.	Conditional
jumps,	on	the	other	hand,	require	a	condition	to	be	met	before	starting	execution	at	a	specified	address.	For	instance:	JC	L1	;	Jump	to	label	L1	if	CF	(carry	flag)	is	set.	The	difference	between	signed	and	unsigned	number	comparisons	can	also	be	explained	using	conditional	jump	instructions.	The	`CMP`	(compare)	instruction	is	used	to	compare	two
operands	and	sets	status	flags	in	the	EFLAGS	register	according	to	the	result.	There	are	different	forms	of	this	instruction	depending	on	the	mode	and	registers	involved.	In	signed	mode,	the	comparison	is	performed	as	subtraction,	while	in	unsigned	mode,	it's	done	using	bitwise	comparison.	The	`CMP`	instruction	takes	an	immediate	value	as	a
second	operand	and	sign-extends	it	to	the	length	of	the	first	operand.	The	result	is	used	to	set	status	flags	in	the	EFLAGS	register,	which	are	then	used	by	other	instructions	such	as	`Jcc`,	`CMOVcc`,	and	`SETcc`.	In	64-bit	mode,	the	default	operation	size	is	32	bits,	but	using	the	REX.R	prefix	allows	access	to	additional	registers	(R8-R15),	while	the
REX.W	prefix	promotes	the	operation	to	64	bits.	The	`CMP`	instruction	sets	several	flags:	CF	(carry	flag),	OF	(overflow	flag),	SF	(sign	flag),	ZF	(zero	flag),	AF	(alternate	flag),	and	PF	(parity	flag).	Note	that	some	registers,	such	as	AH,	BH,	CH,	DH,	cannot	be	accessed	in	64-bit	mode	with	a	REX	prefix.	Protected	Mode	Exceptions	If	an	address	is
outside	the	segment	limits	(CS,	DS,	ES,	FS,	or	GS)	or	a	NULL	segment	selector	is	detected.	#SS(0)	If	an	address	is	outside	the	SS	segment	limit.	#PF(fault-code)	If	a	page	fault	occurs.	#AC(0)	If	alignment	checking	is	enabled	and	an	unaligned	reference	is	made	while	the	current	privilege	level	is	3.	#UD	If	the	LOCK	prefix	is	used.	Real-Address	Mode
Exceptions	#GP	If	an	address	is	outside	the	CS,	DS,	ES,	FS,	or	GS	segment	limit.	#SS	If	an	address	is	outside	the	SS	segment	limit.	Virtual-8086	Mode	Exceptions	#GP(0)	If	an	address	is	outside	the	CS,	DS,	ES,	FS,	or	GS	segment	limit.	#SS(0)	If	an	address	is	outside	the	SS	segment	limit.	#PF(fault-code)	If	a	page	fault	occurs.	#AC(0)	If	alignment
checking	is	enabled	and	an	unaligned	reference	is	made.	#UD	If	the	LOCK	prefix	is	used.	Compatibility	Mode	Exceptions	Same	exceptions	as	in	protected	mode.	64-Bit	Mode	Exceptions	#SS(0)	If	a	memory	address	referencing	the	SS	segment	is	in	a	non-canonical	form.	#GP(0)	If	the	memory	address	is	in	a	non-canonical	form.	#PF(fault-code)	If	a
page	fault	occurs.	#AC(0)	If	alignment	checking	is	enabled	and	an	unaligned	reference	is	made	while	the	current	privilege	level	is	3.	#UD	If	the	LOCK	prefix	is	used.	Conditional	Execution	Conditional	execution	in	assembly	language	involves	several	looping	and	branching	instructions,	which	change	the	flow	of	control	in	a	program.	Two	scenarios	for
conditional	execution	are:	1.	Unconditional	jump	(JMP	instruction)	2.	Conditional	jump	(set	of	jump	instructions	j	depending	upon	the	condition)	The	CMP	instruction	compares	two	operands	and	is	used	along	with	conditional	jump	instructions	for	decision	making.	Whether	the	counter	value	has	reached	the	specified	limit	for	loop	iterations.	To
achieve	this,	we	can	use	a	condition	check.	For	instance:	INC	EDX	CMP	EDX,	10	;	Check	if	the	counter	is	at	or	below	10	JLE	LP1	;	If	it's	less	than	or	equal	to	10,	jump	back	to	LP1	As	mentioned	earlier,	conditional	execution	involves	transferring	control	flow	using	instructions	like	JMP.	This	can	be	done	forward	to	execute	new	instructions	or	backward
to	re-execute	previous	steps.	The	JMP	instruction	provides	a	label	name	where	the	control	flow	is	transferred	immediately.	Its	syntax	is:	JMP	label	Here's	an	example	illustrating	the	use	of	JMP:	MOV	AX,	00	;	Initialize	AX	to	0	MOV	BX,	00	;	Initialize	BX	to	0	MOV	CX,	01	;	Initialize	CX	to	1	L20:	ADD	AX,	01	;	Increment	AX	ADD	BX,	AX	;	Add	AX	to	BX
SHL	CX,	1	;	Shift	left	CX,	doubling	its	value	JMP	L20	;	Repeat	the	statements	Conditional	Jump	Instructions:	If	a	specified	condition	is	met	in	conditional	jump,	control	flow	is	transferred	to	a	target	instruction.	The	following	are	examples	of	conditional	jump	instructions	used	on	signed	data	for	arithmetic	operations:	-	JE/JZ:	Jump	Equal	or	Jump	Zero
(ZF)	-	JNE/JNZ:	Jump	Not	Equal	or	Jump	Not	Zero	(ZF)	-	JG/JNLE:	Jump	Greater	or	Jump	Not	Less/Equal	(OF,	SF,	ZF)	-	JGE/JNL:	Jump	Greater/Equal	or	Jump	Not	Less	(OF,	SF)	-	JL/JNGE:	Jump	Less	or	Jump	Not	Greater/Equal	(OF,	SF)	For	unsigned	data	used	for	logical	operations:	-	JE/JZ:	Jump	Equal	or	Jump	Zero	(ZF)	-	JNE/JNZ:	Jump	not	Equal	or
Jump	Not	Zero	(ZF)	-	JA/JNBE:	Jump	Above	or	Jump	Not	Below/Equal	(CF,	ZF)	-	JAE/JNB:	Jump	Above/Equal	or	Jump	Not	Below	(CF)	And	special	uses	that	check	the	value	of	flags:	-	JC:	Jump	If	Carry	(CF)	-	JNC:	Jump	If	No	Carry	(CF)	-	JO:	Jump	If	Overflow	(OF)	-	JNO:	Jump	If	No	Overflow	(OF)	-	JP/JPE:	Jump	Parity	or	Jump	Parity	Even	(PF)	-	JNP/JPO:
Jump	No	Parity	or	Jump	Parity	Odd	(PF)	-	JS:	Jump	Sign	(negative	value)	(SF)	-	JNS:	Jump	No	Sign	(positive	value)	(SF)	The	syntax	for	the	J	set	of	instructions:	Example:	CMP	AL,	BL	JE	EQUAL	...	EQUAL:	...	A	program	that	displays	the	largest	of	three	variables	using	conditional	jump	instructions	is	provided	below.	The	variables	are	double-digit
numbers	with	values	47,	22,	and	31.	section	.text	global	_start	_start:	mov	ecx,	[num1]	cmp	ecx,	[num2]	jg	check_third_num	mov	ecx,	[num2]	check_third_num:	cmp	ecx,	[num3]	jg	_exit	mov	ecx,	[num3]	_exit:	mov	[largest],	ecx	mov	ecx,msg	mov	edx,	len	mov	ebx,1	;file	descriptor	(stdout)	mov	eax,4	;system	call	number	(sys_write)	int	0x80	;call	kernel
mov	ecx,largest	mov	edx,	2	mov	ebx,1	;file	descriptor	(stdout)	mov	eax,4	;system	call	number	The	cmp	instruction	in	ARM	assembly	compares	two	operands	by	subtracting	the	value	of	Operand2	from	the	value	in	Rn,	discarding	the	result.	It	serves	the	same	purpose	as	a	SUB	instruction	but	without	modifying	operands,	influencing	only	the	Zero	Flag
(ZF)	and	Carry	Flag	(CF).

