
	

https://rutosina.tugoduzak.com/969816529690188106172299822053262097188419?dimefezemipivuduzulajetirufujowazexagub=bigeliwupimumivenalojojezudonilipodimonunasogutuvefefiguruxukulejuvederojagozaronaboxipedewelugavoxufenepefosemovubogawumuketunojofazugijuriwesisatufikewaxotulilavadoditizamupijosupederutilapivuluduxaxomulu&utm_kwd=suze+orman+how+much+to+save+for+retirement&mexosesovobofometapoxaninubapuburuwaniponabazimufadotefetijovezepezuronipimaxaxab=zanabilekezovidaguwirudapulebibikadujumilaxovofokodadanasivujututupabupodawajujubimivesogevizevekumid

Its	2025	and	most	top	tech	companies	are	still	asking	LeetCode	style	questions	in	coding	interviews.But	getting	started	on	LeetCode	is	harder	than	ever.	With	over	3,000	problems,	its	easy	to	feel	overwhelmed	and	lost.How	do	you	even	start?	Which	problems	should	you	solve?	How	many	problems	are	enough	for	coding	interviews?How	much	time
should	you	spend	on	each	problem?I	will	answer	these	questions	and	more	in	this	article	to	make	your	journey	smoother,	and	lot	less	less	painful.For	context	-	Ive	solved	more	than	1,500	LeetCode	problems	and	cleared	interviews	at	multiple	big	tech	companies	including	Amazon,	Google,	and	Microsoft	and	in	this	article	Ill	share	everything	Ive
learned	to	help	you	start	and	navigate	LeetCode	more	effectively.Ill	share	practical	tips	and	resources	to	help	you	save	time,	stay	focused	and	build	your	problem-solving	skills	without	feeling	overwhelmed.You	might	be	wondering:	why	is	everyone	doing	LeetCode	questions.	Is	it	really	necessary	to	land	a	Software	Engineering	job?The	short	answer	is:
not	always.There	are	plenty	of	startups	and	smaller	companies	that	focus	more	on	your	experience	with	specific	tech	stacks	and	the	projects	youve	built.	They	might	not	even	include	LeetCode	style	questions	in	their	interview	process.But	if	your	goal	is	to	work	at	big	tech	companies	like	Amazon,	Google,	or	Microsoft,	you	would	need	to	practice
LeetCode	style	questions	since	thats	what	they	ask	in	their	interviews.This	is	a	question	I	get	asked	all	the	time.Many	people	get	stuck	at	deciding	which	programming	language	to	use.But	heres	the	truth:	It	doesnt	really	matter.	A	programming	language	is	just	a	tool.	Once	you	understand	the	approach	to	solving	a	problem,	you	can	implement	it	in
any	language.In	my	experience	giving	interviews,	unless	the	job	specifically	requires	expertise	in	a	certain	language,	youll	be	fine	using	any	language	youre	comfortable	with.The	point	is,	LeetCode	isnt	about	syntax.	Its	about	using	the	right	data	structures,	algorithms,	and	your	ability	to	think	critically	and	solve	problems.That	said,	if	youre	new	to
coding,	I	recommend	starting	with	Python.	Its	beginner-friendly	and	has	a	simpler	syntax.If	you	already	know	a	languagestick	with	it.	Whether	its	C++,	Java,	C#,	JavaScript,	TypeScript	or	Go,	theres	no	need	to	switch.You	dont	need	to	be	an	expert	in	your	chosen	language,	but	you	should	know	the	basics	like:variables	and	data	typesloops	(for	and
while)if-else	conditionsarrays	and	stringsfunctions	and	classesand	input/output	operationsBeyond	the	basics,	spend	some	time	learning	the	built-in	libraries	for	common	data	structures	and	algorithms.These	libraries	save	time	and	let	you	focus	on	solving	the	problem	rather	than	reimplementing	data	structures	from	scratch.For	example:Python	has
lists,	dictionaries,	and	sets.Java	has	ArrayList,	HashMap,	and	PriorityQueue.C++	offers	the	STL	library	with	vector,	map,	and	set.Before	diving	into	LeetCode	problems,	its	good	to	familiarize	yourself	with	the	fundamentals	of	data	structures	and	algorithms.Start	by	understanding:Big	O	notation	and	Time	ComplexityBasic	Data	Structures	like	Arrays,
strings,	linked	lists,	stacks,	queues,	hash	tables,	and	binary	trees.and	Fundamental	Algorithms	like	Sorting	techniques,	binary	search,	and	recursion.Recursion	is	particularly	important,	since	many	problems	specially	tree	and	graph	related	ones	rely	heavily	on	it.When	youre	familiar	with	these	topics,	it	becomes	much	easier	to	recognize	which
concept	applies	to	a	specific	problem.You	dont	need	to	dive	too	deeply	into	every	topic	upfront.	Most	of	your	understanding	will	develop	naturally	as	you	solve	problems.There	are	plenty	of	resources	available	online	to	help	you	get	started.	Dont	waste	time	searching	for	the	perfect	resourcepick	one	and	start	learning.The	focus	should	always	be	on
progress,	not	perfection.Here	are	some	resources	I	personally	found	quite	useful:For	DSA	Patterns:	AlgoMasterIO:	Its	my	second	channel	where	I	upload	animated	tutorials	on	DSA	and	LeetCode	patterns.Heres	a	comprehensive	list	of	DSA	topics	you	should	know	for	coding	interviews:ShareIf	youre	a	beginner,	focus	on	one	topic	at	a	time	to	avoid
feeling	overwhelmed.For	example:	Start	with	arrays,	the	move	to	strings,	then	progress	to	more	complex	topics	like	linked	lists,	hash	tables,	and	binary	trees.This	approach	helps	you	develop	a	deeper	understanding	of	each	topic	and	teaches	you	how	to	recognize	when	to	use	a	particular	data	structure	or	algorithm.Once	youve	learned	the	basics	of	a
topic	and	understand	how	to	implement	it	from	scratch,	its	time	to	put	your	knowledge	to	the	test.Solve	4-5	easy	problems	related	to	that	topic	on	LeetCode.This	will:Reinforce	your	learning.and	Build	confidence	in	applying	the	concepts.If	you	want	to	learn	more	about	how	to	master	a	DSA	topic,	you	can	check	out	this	article	where	I	discuss	it	in
more	detail:If	you	open	LeetCode,	there	are	over	3,000	problems.That	number	alone	can	feel	overwhelming.	So,	how	do	you	decide	which	ones	to	solve?Start	with	easy	problems	for	each	topic.	These	are	perfect	for	building	confidence	and	understanding	the	basics	of	problem-solving.Once	youre	comfortable	with	the	easy	ones,	gradually	challenge
yourself	with	slightly	harder	problems	that	push	you	beyond	your	comfort	zone.Remember,	real	growth	happens	when	you	constantly	challenge	yourself.Dont	worry	about	hard	problems	in	the	beginning.Most	coding	interviews	focus	on	medium-level	problems,	so	thats	where	you	should	spend	the	majority	of	your	time.LeetCode	also	provides	curated
lists	like	the	Top	100	Liked	Problems	and	Top	Interview	150	Problems.These	lists	are	excellent,	and	I	highly	recommend	solving	every	problem	on	them.Theres	no	magic	number,	but	from	my	experience,	300	well-chosen	problems	is	the	sweet	spot.However,	its	not	about	solving	just	any	300	problems.	Focus	on	high-quality	problems	that	cover	the
most	topics	and	patterns.To	make	it	easier	for	you,	Ive	created	a	free	resource:	a	curated	list	of	the	Top	300	LeetCode	Problems	organized	into	60	topics	and	patterns	that	are	most	commonly	asked	in	coding	interviews.You	can	find	it	on	algomaster.io.	Just	head	to	the	practice	page.	You	will	see	a	structured	list	of	problems	that	you	can	follow	from
top	to	bottom.Here	youll	find:Resources	to	help	you	learn	the	topics.Ability	to	track	your	progress	and	mark	problems	for	future	revision.Links	to	GitHub	and	YouTube	solutions.and	ability	to	filter	problems	based	on	pattern,	difficulty	level	and	status.Dont	rush	through	problems	just	to	increase	your	count.	Instead	of	focusing	on	the	quantity	of
problems	you	solve,	focus	on	what	you	learn	from	each	problem.Its	far	better	to	deeply	understand	and	solve	50	problems	than	to	superficially	solve	500	problems.After	solving	a	problem,	ask	yourself:Why	does	this	solution	work?Whats	the	one	key	insight	that	made	everything	else	easier?Also,	try	to	make	it	fun.	There	is	a	fun	in	learning	to	solve
coding	challenges.	Its	not	just	about	getting	a	job.The	key	to	getting	better	at	LeetCode	is	learning	as	many	patterns	as	possible.Instead	of	focusing	on	individual	questions,	focus	on	identifying	underlying	patterns	that	connect	similar	problems.On	LeetCode,	youll	come	across	multiple	problems	that	follow	a	similar	patterns.	Once	you	solve	one	of
them,	you	can	apply	the	same	approach	to	solve	others.For	example:	After	learning	the	monotonic	stack	pattern,	I	was	able	to	solve	over	10	similar	problems.I	made	a	video	covering	the	15	most	important	LeetCode	patterns	I	learned	after	solving	over	1,500	problems.	You	can	check	it	out	later.On	algomaster.io,	Ive	categorized	problems	by	pattern.
This	makes	it	easy	to	focus	on	one	pattern	at	a	time.	By	going	through	the	list,	you	will	get	to	know	all	the	important	patterns	for	coding	interviews.The	first	time,	focus	on	getting	the	big	picture.	What	is	the	problem	asking	you	to	do?On	the	second	read,	pay	attention	to	specific	constraints	and	conditions.	These	small	details	often	provide	clues	for
optimizing	your	solution.Carefully	go	through	the	examples	provided	in	the	problem.Walk	through	the	input	and	output	step	by	step	to	understand	how	the	problem	works.	I	have	found	that,	many	times	simply	walking	through	a	few	examples	helped	me	figure	out	the	solution.Many	problems	specially	the	ones	related	to	trees	and	graphs	are	much
easier	to	understand	when	you	draw	them	out.Try	to	take	examples	that	cover	different	scenarios	and	input	sizes.	Think	about	any	edge	cases	that	might	come	up.Dont	expect	to	come	up	with	the	most	optimal	solution	right	away.First	see,	if	you	can	solve	the	problems	using	a	brute	force	approach.	While	it	might	not	be	efficient,	it	gives	you	a	baseline
to	improve	upon.Once	you	have	a	brute	force	solution,	focus	on	optimizing	it.Here	are	few	things	to	consider:Leverage	Unused	Information:	Look	for	details	you	might	have	missed.	For	instance,	if	the	problem	states	that	the	array	is	sorted,	consider	leveraging	this	to	use	binary	search	or	a	two-pointer	approach.Precompute	Information:	If	certain
calculations	are	repeated	multiple	times,	consider	precomputing	them.	Use	techniques	like	prefix	sums	or	frequency	counts	to	avoid	redundant	calculations.	Hash	tables	are	widely	used	in	interview	questions	and	should	be	at	the	top	of	your	mind.Make	Time	vs.	Space	Tradeoffs:	Sometimes,	using	additional	memory	(e.g.,	hash	tables)	can	speed	up
your	solution.Data	Structure	Brainstorm:	Run	through	the	popular	data	structures	and	try	to	apply	each	one	to	the	problem	at	hand.Avoid	overcomplicating	your	solution.	At	every	stage	ask	yourself,	"Is	there	a	simpler	way	to	do	this?".	This	will	not	only	make	your	solution	easier	to	understand	but	it	will	also	reduce	the	chances	of	errors	during
coding.Develop	the	habit	of	analyzing	the	time	and	space	complexity	of	every	problem	you	submit.When	youre	just	starting	out,	even	easy	problems	can	take	a	while	to	solve.	Thats	completely	normaldont	get	discouraged	if	you	cant	come	up	with	a	solution	right	away.Your	main	goal	in	the	beginning	should	be	to	focus	on	learning	and	understanding
the	problem	deeply.	Real	progress	happens	when	you	take	the	time	to	think,	make	mistakes	and	refine	your	approach.But,	some	problems	involve	specific	tricks	or	patterns	that	are	hard	to	figure	out	unless	youve	seen	them	before.Spending	hours	on	such	problems	without	progress	can	be	counterproductive.Heres	a	good	rule	of	thumb:Give	yourself
30	to	60	minutes	of	focused	effort	for	each	problem.If	youre	still	stuck,	its	okay	to	look	at	hints	or	solutions.Read	the	official	solution	and	and	try	to	understand	the	top	voted	solutions	on	LeetCode	discussion	forum.Dont	just	move	on	after	viewing	the	solution.	Try	to	grasp	why	the	solution	works.Rewrite	the	solution	from	scratch	without	looking	at	the
code.	Writing	it	yourself	helps	you	internalize	the	approach	and	ensures	you	truly	understand	it.If	you	couldnt	solve	the	problem	on	your	first	attempt,	mark	it	for	revision	and	revisit	it	after	a	few	weeks.	Revisiting	problems	helps	reinforce	your	understanding	and	ensures	long-term	retention.One	of	the	most	common	mistakesone	that	I	made	myselfis
memorizing	solutions	to	difficult	problems	and	moving	on.At	first,	it	might	seem	like	a	shortcut,	but	in	reality,	its	a	big	mistake	for	three	main	reasons:Youll	quickly	forget	memorized	solutions.	Without	understanding	the	logic	behind	them,	they	wont	stick	in	your	memory.Your	problem-solving	skills	wont	improve.	Memorization	skips	the	critical
thinking	process,	which	is	the	real	value	of	practicing	coding	problems.Youll	struggle	in	interviews.	Most	interviewers	ask	variants	of	problems	or	follow-up	questions,	and	without	a	deep	understanding,	you	wont	be	able	to	adapt.Instead	of	memorizing,	focus	on	understanding	the	solution,	even	if	it	takes	hours.Break	it	down	step	by	step	and	ask
yourself:Why	does	this	approach	work?Whats	the	key	insight	that	simplifies	the	problem?How	can	I	apply	this	approach	to	similar	problems?This	effort	pays	off	in	the	long	term.	The	deeper	your	understanding,	the	more	confident	youll	feel	explaining	your	thought	process	during	interviews.Solving	a	problem	during	an	interview	is	very	different	from
solving	it	from	the	comfort	of	your	home.Thats	why	its	a	good	idea	to	time-box	yourself	and	practice	in	a	timed	environment	after	you	have	learned	the	basics	and	solved	100-150	problems.Simply	turn	on	a	timer	while	practicing	and	try	to	complete	the	problem	within	that	time.For	easy	problems,	aim	to	complete	them	in	10-15	minutes.For	medium
problems,	set	a	timer	for	up	to	30	minutes.For	hard	problems,	allow	yourself	up	to	an	hour.To	take	your	practice	a	step	further:Participate	in	LeetCode	contests.Try	virtual	contests	by	simulating	past	LeetCode	contests.Its	okay	if	you	struggle	to	solve	even	one	problem	initiallythis	is	normal.	The	goal	is	to	gain	experience	solving	problems	within	a
time	limit.When	I	started	participating	in	contests,	I	could	only	solve	1-2	problems.	But	with	consistent	practice,	I	improved	to	solving	3	problems,	and	eventually,	I	was	able	to	solve	all	of	them	in	some	contests.Getting	good	at	LeetCode	isnt	just	about	learning	new	concepts	or	solving	problemsits	also	about	retaining	that	knowledge	over	time.Thats
why	you	should	regularly	revisit	concepts	and	problems	youve	already	solved,	especially	the	ones	you	found	challenging.Try	to	solve	those	problems	again	without	looking	at	the	solution.By	practicing	consistently	and	revisiting	old	problems,	youll	make	it	much	easier	to	retain	what	youve	learned	over	time.I	discuss	more	about	how	to	effectively
revise	LeetCode	problems	in	this	article,	so	make	sure	to	check	it	out:	Getting	good	at	LeetCode	takes	time.Some	topics	might	take	weeks	or	even	months	to	master,	and	thats	okay.	Be	patient	with	yourself	and	remember:	Its	completely	normal	to	feel	stuck	or	frustrated	when	working	on	a	tough	problem	or	grasping	a	complex	topic.If	a	problem	feels
too	hard,	take	a	break,	then	come	back	to	it	with	a	fresh	perspective.The	more	you	practice,	the	better	you	will	get	at	solving	LeetCode	problems.Thank	you	for	reading!If	you	found	it	valuable,	hit	a	like	and	consider	subscribing	for	more	such	content	every	week.If	you	have	any	questions	or	suggestions,	leave	a	comment.This	post	is	public	so	feel	free
to	share	it.ShareP.S.	If	youre	finding	this	newsletter	helpful	and	want	to	get	even	more	value,	consider	becoming	a	paid	subscriber.As	a	paid	subscriber,	you'll	receive	an	exclusive	deep	dive	every	week,	access	to	a	comprehensive	system	design	learning	resource	,	and	other	premium	perks.Get	full	access	to	AlgoMasterThere	are	group	discounts,	gift
options,	and	referral	bonuses	available.Checkout	my	Youtube	channel	for	more	in-depth	content.Follow	me	on	LinkedIn,	X	and	Medium	to	stay	updated.Checkout	my	GitHub	repositories	for	free	interview	preparation	resources.I	hope	you	have	a	lovely	day!See	you	soon,Ashish	I	want	to	tell	you	a	story	about	how	I	started	from	the	level	of	"can't	solve
even	1	easy	problem	out	of	10"	to	the	level	of	"can	solve	every	other	medium	problem"	and	went	through	several	coding	sessions	at	companies	like	Meta,	Booking,	Careem,	Avito...	It	all	started	at	the	end	of	2022	when	I	firmly	decided	that	I	wanted	to	land	a	job	at	a	FAANG	company.	However,	as	you	probably	know,	this	requires	knowledge	of
algorithms	and	data	structures,	which	I	lacked	because	in	regular	work,	you	don't	need	heap,	tree,	disjoint	set,	and	other	data	structures.	So,	I	had	to	start	almost	from	scratch.	It	was	very	challenging	since	I	didn't	know	where	to	begin,	how	to	approach	problem-solving,	what	was	important,	and	what	wasn't.	I	also	had	questions	like	how	many
problems	to	solve	to	feel	confident	and	if	I	could	even	progress	to	medium-level	problems.	Solving	even	easy	problems	was	puzzling,	and	below,	I'll	try	to	help	you	with	this.	The	first	thing	that	comes	to	mind	when	you	want	to	start	solving	LeetCode	problems	is	to	open	the	problems	page	and	start	solving	them	sequentially.	However,	it's	not	a	great
idea,	even	if	you	filter	for	easy	problems,	because	many	tasks	labeled	as	easy	are	quite	challenging.	This	can	be	demotivating	and	even	lower	your	self-esteem.	Tips:First	tip	-	pay	attention	to	the	Acceptance	rate;	the	higher,	the	better.	This	indicates	that	many	people	manage	to	solve	the	problem,	increasing	the	likelihood	that	you	can	too.
Additionally,	you	can	explore	the	study	plan	and	try	solving	problems	from	there:Top	100	Liked:	A	list	of	highly	liked	problems.	If	there	are	many	likes,	there's	a	chance	it's	not	a	convoluted	problem	that	could	lower	your	assessment.Top	Interview	150:	A	list	of	the	top	150	problems	for	interview	preparation.	You're	likely	to	encounter	these	in
interviews,	but	some	might	be	challenging,	especially	early	on.LeetCode	75:	Described	as	a	"Must-do	problem	list	for	interview	prep."	These	problems	are	categorized	into	different	topics;	solve	them	following	the	next	piece	of	advice.Second	tip	-	start	with	the	most	fundamental	data	structures	like	arrays	(one-dimensional/two-dimensional),	set,
hashmap;	you'll	encounter	them	frequently.	For	instance,	in	many	problems,	execution	time	can	be	improved	by	adding	a	set	or	hashmap	(though	keep	in	mind	this	may	increase	memory	consumption).	Only	after	mastering	these	should	you	delve	into	other	structures	like	stacks,	queues,	linked	lists,	trees,	and	graphs.On	LeetCode,	there	are	cards
providing	explanations	of	data	structures	and	algorithms,	along	with	problems	to	reinforce	these	concepts	-	LeetCode	Explore.	As	mentioned	earlier,	begin	with	simple	cards	like	arrays	and	strings,	gradually	increasing	difficulty.	I	revisited	these	cards	several	times	because	some	concepts	weren't	clear	initially.	Don't	think	there's	anything	wrong	if
something	is	unclear;	return	later,	and	you	might	find	you	now	understand	it.Here	are	some	additional	resources:LeetCode	Learn:	Cards	with	explanations	and	problems.Neetcode	Roadmap:	A	roadmap	with	topics	and	problems;	highly	recommended.Tech	Interview	Handbook:	Create	a	weekly	plan	using	various	filters.LeetCode	Patterns:	A	list	of	150
popular	problems	categorized	by	topics,	difficulty,	and	companies.Third	tip	-	if	you	can't	come	up	with	an	optimal	solution,	start	with	a	"brute-force"	solution.	Once	you	have	that,	think	about	how	to	improve	it.Can	you	use	a	specific	data	structure?Can	the	array	be	sorted?What	if	you	use	a	set	or	hashmap?Is	there	a	template	you	can	apply?If	nothing
helps	and	you've	already	spent	20-40	minutes,	confidently	open	the	solution	and	study	it.	After	doing	so,	close	the	solution	and	try	to	solve	it	again	(this	may	take	several	iterations,	which	is	normal).	If	you're	still	unable	to	solve	it	after	multiple	attempts,	consider	typing	out	the	solution	(I've	done	this	several	times).	However,	don't	forget	to	revisit	the
problem	later	and	try	solving	it	again.	It's	entirely	possible	that	you	might	not	succeed	initially,	and	that's	okay.	Just	repeat	the	steps	until	you're	confident.Fourth	tip	-	go	through	these	14	patterns,	especially	focusing	on	two	pointers,	sliding	window,	and	fast	&	slow	pointers,	as	they	are	often	encountered.	Take	a	pattern,	find	problems	under	that
pattern	(on	the	LeetCode	problems	page,	use	the	filter	for	tags	like	"Two	pointers"	or	"Sliding	window"),	and	solve	enough	problems	to	solidify	your	understanding	of	that	topic.Fifth	and	most	important	tip	-	practice,	practice,	and	practice	again.	In	the	beginning,	I	often	felt	like	crying	from	frustration	because	I	couldn't	even	solve	simple	problems.
This	is	not	an	exaggeration.	The	thought	of	"I'm	so	dumb"	lingered	in	my	mind	for	the	first	few	months.	Even	after	solving	600	problems,	there	are	still	moments	when	self-esteem	drops,	especially	if	I	can't	solve	a	seemingly	easy	problem.	What's	important	is	that	with	each	solved	problem,	you'll	become	better	relative	to	yourself.	Solving	LeetCode
problems	is	now	addressed	on	the	platform	Firecode,	where	problems	are	presented	one	after	another,	starting	with	easy	ones	and	revisiting	previously	solved	problems	for	reinforcement.	There	are	explanations	for	various	topics,	and	after	solving	a	problem,	you	can	see	how	others	approached	it,	which	is	very	helpful	for	understanding	different
solution	strategies.	FAQ:	What	should	I	do	if	I	can't	solve	a	problem?	If	you	can't	solve	a	problem	after	30-40	minutes,	look	at	the	solution,	try	to	find	a	video	solution	for	that	problem.	After	reviewing	and	understanding,	attempt	to	solve	it	again.	If	unsuccessful,	repeat	the	process.	Periodically	revisit	old	problems,	especially	those	that	were
challenging.	I've	sometimes	solved	the	same	problem	10-15	times	or	more.	How	many	problems	should	I	solve	before	applying	to	jobs?	It	varies	individually.	I	spent	six	months	solving	a	few	problems	every	day,	around	300	problems,	before	feeling	a	solid	foundation.	Confidence	came	after	solving	around	400-500	problems.	Some	may	only	need	to
solve	100-200	problems,	but	unfortunately,	I'm	not	among	them.	Which	programming	language	is	best	for	problem-solving?	In	short	-	Python.	I	started	with	PHP,	switched	to	Go,	then	Java.	After	watching	a	video,	I	tried	Python	and	have	been	using	it	since.	Python's	concise	code,	built-in	functions	(like	Counter,	defaultdict,	divmod,	lambda,	etc.),	and
speed	are	advantageous	during	interviews.	How	to	find	time	for	problem-solving?	I	aimed	to	solve	two	problems	daily,	one	before	work	and	one	after.	On	weekends,	I	dedicated	more	time,	watching	videos,	reading	articles,	solving	more	problems,	and	revisiting	old	ones	for	reinforcement.	Is	it	worth	buying	LeetCode	premium?	The	most	useful	feature
of	premium	is	seeing	which	companies	gave	a	particular	problem.	If	preparing	for	a	specific	company,	it's	recommended;	otherwise,	the	free	version	is	sufficient.	Video	explanations	can	be	found	on	channels	like	Neetcode.	Is	it	worth	buying	access	to	educative.io?	While	there	are	many	recommendations	for	the	Grokking	Coding	Interview	Patterns
course	on	educative,	I	didn't	find	it	very	useful.	Visual	explanations	were	the	only	positive	aspect.	In	my	opinion,	watching	YouTube	videos	is	a	better	alternative.	Is	it	worth	buying	access	to	algoexpert.io?	In	my	view,	algoexpert.io	is	a	very	useful	resource.	Each	problem	comes	with	detailed	explanations	in	videos	lasting	30-50	minutes.	They	often
have	promotions,	and	you	can	sometimes	get	all	courses	for	a	year	for	$99.	It's	reasonably	priced,	has	a	pleasant	website,	numerous	test	cases,	and	a	user-friendly	editor.	Results:Achieved	my	initial	goal	for	solving	algorithms	-	passing	coding	interviews,	a	crucial	step	in	FAANG	companies.	Successfully	went	through	several	interviews,	and	most
importantly,	no	longer	fear	this	stage.Deepened	understanding	of	data	structures.	From	not	knowing	what	a	heap	is,	I	now	have	a	comprehensive	understanding	of	this	structure	and	others.Changed	my	perspective	on	code	during	work.	Now	I	can	identify	areas	to	use	more	memory	efficiently	or	reduce	time	complexity.Last	but	not	least	-	brain	fitness.
Transitioned	from	"don't	want	to	do	it"	to	"want	to	solve	problems	every	day."	Useful	Links:	Russian	version:	Want	to	ace	coding	interviews	and	improve	your	problem-solving	skills?	Start	with	LeetCode.	This	platform	offers	a	structured	way	to	learn,	practice,	and	master	coding	challenges.	Heres	how	to	get	started	effectively:Focus	on	Fundamentals:
Learn	key	data	structures	(arrays,	trees,	graphs)	and	algorithms	(sorting,	recursion,	dynamic	programming).Start	Simple:	Begin	with	easy	problems,	then	progress	to	medium	and	hard	challenges.Use	the	Right	Tools:	Leverage	LeetCode	features	like	Explore	cards,	problem	filters,	and	discussion	forums.Practice	Patterns:	Master	common	coding
patterns	like	Sliding	Window,	Two	Pointers,	and	Dynamic	Programming.Stay	Consistent:	Solve	problems	daily,	review	past	solutions,	and	track	your	progress.How	I	would	learn	Leetcode	if	I	could	start	overStarting	on	LeetCodeTo	succeed	on	LeetCode,	you	need	a	focused	approach	that	builds	strong	fundamentals.	Heres	how	to	get	started
effectively.Mastering	Data	Structures	and	AlgorithmsUnderstanding	data	structures	and	algorithms	is	key	to	solving	problems	on	LeetCode.	Start	by	mastering	essential	data	structures	like	arrays,	linked	lists,	trees,	and	graphs.	Pair	this	with	learning	fundamental	algorithms	such	as	sorting	techniques,	binary	search,	recursion,	and	graph
traversal.Some	key	areas	to	dive	into:Working	with	arrays	and	stringsManipulating	linked	listsTraversing	treesExploring	graph	search	methodsChoosing	the	Right	Programming	LanguageSelecting	a	programming	language	is	an	important	step.	Python	is	a	great	choice	for	beginners	because	of	its	simple	syntax	and	extensive	libraries	[1][5].	However,
your	choice	should	depend	on	your	familiarity	with	programming,	the	languages	demand	in	the	job	market,	and	its	built-in	support	for	data	structures.Factors	to	consider:Your	prior	coding	experiencePopularity	of	the	language	in	tech	rolesEase	of	implementing	algorithms	and	data	structures	Once	youve	created	an	account,	take	advantage	of	the
platforms	tools	like	filters,	Explore	cards,	and	community	forums.	These	features	can	help	you	streamline	your	learning	process.FeaturePurposeProblem	CategoriesFocus	on	specific	topics	to	address	weak	areasDifficulty	FiltersStart	with	easier	challenges	and	gradually	level	upDiscussion	ForumsGain	insights	from	community	solutions	and
tipsLeetCode	Explore	cards	are	especially	helpful,	offering	guided	learning	paths	that	combine	theory	with	practical	problems	[4].With	these	basics	covered,	youre	ready	to	dive	into	solving	problems	and	improving	your	skills	step	by	step.Improving	Problem-Solving	SkillsImproving	your	problem-solving	skills	on	LeetCode	requires	a	clear	and
organized	approach.	By	combining	logical	thinking	with	recognizing	common	patterns,	you	can	sharpen	your	coding	abilities.	Lets	break	it	down.Using	a	Structured	Problem-Solving	MethodThe	first	step	is	to	carefully	analyze	the	problem	statement.	Break	it	into	smaller	parts	and	focus	on	the	critical	aspects:StepWhat	to	Look	ForInput	AnalysisData
types,	size	limits,	edge	casesOutput	RequirementsExpected	format,	validation	rulesConstraintsTime/space	complexity,	special	conditionsTest	CasesTypical	inputs,	edge	cases,	unexpected	scenariosSketching	out	your	solution	beforehand	can	help	you	spot	potential	problems	and	guide	your	implementation	process.Practicing	Key	Coding
PatternsFamiliarize	yourself	with	common	coding	patterns	like	Sliding	Window,	Two	Pointers,	and	Dynamic	Programming.	These	patterns	are	frequently	used	in	interviews	and	can	simplify	a	wide	range	of	problems.PatternWhere	It	HelpsSliding	WindowString	or	array	operationsTwo	PointersArray	manipulation,	linked	listsDynamic
ProgrammingOptimization	problemsGreedy	AlgorithmsScheduling,	resource	allocation"Focus	on	fundamental	data	structures	like	arrays,	sets,	and	hashmaps."	LeetCode	Solutions	[4]Progressing	from	Easy	to	Hard	ProblemsStart	with	easy	problems	to	build	a	solid	foundation,	then	gradually	work	your	way	up	to	medium	and	hard	challenges.	Use
LeetCodes	Explore	cards	or	curated	problem	lists	to	practice	systematically.DifficultyKey	Topics	to	Focus	OnEasyArray	manipulations,	basic	string	operationsMediumTree	traversal,	graph	algorithmsHardAdvanced	dynamic	programming,	complex	optimizations"Practice	regularly:	Even	if	you	cant	commit	a	lot	of	time	every	day,	try	to	solve	at	least	one
problem	a	day."	LeetCode	Discuss	[3]If	you	get	stuck,	review	solutions	from	others,	but	make	sure	to	understand	the	logic	behind	them	before	moving	forward.	These	strategies	will	help	you	consistently	improve	and	build	mastery	on	LeetCode.sbb-itb-f454395Strategies	for	Mastering	LeetCodeBuilding	strong	coding	interview	skills	takes	more	than
just	solving	random	problems.	Here	are	some	strategies	to	help	you	make	steady	progress	on	LeetCode.Maintaining	a	Regular	Practice	ScheduleSet	aside	at	least	an	hour	daily	or	57	hours	weekly	to	work	on	problems.	Focus	on	recognizing	patterns,	improving	solutions,	and	solving	problems	of	mixed	difficulty	across	different	topics.	Make	it	a	habit	to
review	1015	previous	problems	each	month	to	strengthen	your	understanding	of	common	patterns	and	optimization	methods."Dedicating	one	hour	each	day	to	solving	problems	can	be	more	beneficial	than	solving	problems	for	seven	hours	on	one	day."	[2]Consistency	is	key,	but	it	works	best	when	paired	with	regular	reflection	and	revisiting	past
challenges.Reviewing	and	Revisiting	ProblemsGo	back	to	problems	youve	already	solved	to	reinforce	important	concepts	and	uncover	recurring	patterns.	Keep	a	log	of	your	solutions,	approaches,	and	insights.	Use	this	log	for	weekly	or	monthly	reviews	to	deepen	your	understanding	and	refine	your	problem-solving	techniques.Review
StrategyPurposeWeekly	ReviewReinforce	recent	concepts	and	patternsMonthly	Deep	DiveAnalyze	tough	problems	and	explore	alternative	methodsPattern-based	ReviewGroup	similar	problems	to	strengthen	pattern	recognitionLearning	from	Solutions	and	DiscussionsAfter	solving	a	problem,	take	time	to	study	editorial	solutions	and	community
discussions.	These	resources	can	help	you	discover	alternative	approaches,	handle	edge	cases,	and	improve	optimization.	Re-implementing	solutions	is	a	great	way	to	solidify	your	understanding.	Pay	attention	to	the	logic	behind	the	solutions,	the	data	structures	and	algorithms	used,	and	any	optimization	techniques	mentioned."Focus	on	active
improvement,	recognizing	patterns	from	previous	solutions,	and	maintaining	a	growth	mindset."	[1]Using	LeetCode	Features	and	Additional	ResourcesOnce	youve	got	a	solid	practice	routine	in	place,	tapping	into	LeetCodes	tools	and	external	resources	can	give	you	an	extra	edge.	These	options	work	alongside	consistent	practice	to	help	you	grow
faster	and	smarter.Leveraging	Curated	Problem	ListsCurated	problem	lists	like	Neetcode	and	LeetCode	Patterns	are	great	for	beginners.	They	provide	a	clear	path	by	organizing	problems	based	on	topics	and	difficulty	levels.	This	makes	it	easier	to	build	essential	skills	step	by	step.Collection	TypeFocus	AreaBenefitsNeetcode	RoadmapCore
AlgorithmsGuides	you	through	key	algorithm	topicsLeetCode	PatternsCompany-specific	ProblemsPrepares	you	for	employer-focused	questionsAdding	Educational	Platforms	to	the	MixLeetCode	is	excellent	for	sharpening	problem-solving	skills,	but	other	platforms	can	help	round	out	your	learning.	For	instance,	KodNest	lets	you	work	on	hands-on
projects	and	apply	the	theoretical	knowledge	youve	gained.	Plus,	their	job	placement	support	can	help	you	transition	from	practice	to	professional	opportunities."Focus	on	active	improvement,	recognizing	patterns	from	previous	solutions,	and	maintaining	a	growth	mindset."	[1]	Broaden	your	knowledge	with	resources	like	Cracking	the	Coding
Interview	for	interview	tips	and	strategies.	You	can	also	use	tools	like	LeetCode	Enhancer,	a	browser	extension	that	helps	you	filter	locked	problems	and	organize	your	study	sessions.	These	extras	can	streamline	your	learning	process	and	make	your	practice	more	effective.Conclusion:	Mastering	LeetCodeMastering	LeetCode	is	all	about	building	solid
skills	in	algorithms	and	problem-solving.	It	provides	an	excellent	platform	to	sharpen	the	technical	abilities	required	for	coding	interviews	and	real-world	programming	tasks.To	succeed	on	LeetCode,	focus	on	these	three	key	areas:Building	a	Strong	Base:	Start	with	fundamental	data	structures	and	algorithms,	then	move	on	to	more	advanced	topics.
Pay	attention	to	recognizing	patterns	and	improving	your	solutions	efficiency	[4].Focused	Practice:	Combine	learning	core	concepts	with	solving	problems	regularly.	Short,	consistent	practice	sessions	are	often	more	effective	than	cramming	in	long,	sporadic	ones	[1].Learning	from	Review:	Keep	improving	by	revisiting	solutions,	exploring	alternative
methods,	and	fine-tuning	your	problem-solving	techniques	[1]	[4].Progress	on	LeetCode	comes	from	steady	effort	and	thoughtful	use	of	its	resources.	Track	your	growth,	revisit	tough	problems,	and	deepen	your	understanding	of	the	core	topics	to	make	the	most	of	your	learning	experience.Related	posts	My	LeetCode	ProfileLeetCode	has	become	the
go-to	platform	for	aspiring	software	engineers	and	developers	to	hone	their	problem-solving	skills	and	prepare	for	technical	interviews.	However,	the	vast	array	of	problems	can	be	overwhelming	for	newcomers.	In	this	article,	well	provide	a	comprehensive	guide	on	how	to	approach	LeetCode	problems	step	by	step,	from	selecting	the	right	questions
to	mastering	your	problem-solving	skills.Step	1:	Setting	the	Foundation1.1	Understand	the	BasicsBefore	diving	into	LeetCode	problems,	ensure	you	have	a	strong	grasp	of	fundamental	data	structures	and	algorithms,	including:ArraysLinked	ListsStacks	and	QueuesTrees	and	GraphsSorting	and	Searching	AlgorithmsDynamic	Programming1.2	Learn
Time	and	Space	ComplexityLeetCode	categorizes	problems	into	three	levels	of	difficulty:	Easy,	Medium,	and	Hard.	Start	with	Easy	problems	to	build	your	confidence	and	gradually	move	on	to	Medium	and	Hard	problems	as	you	gain	experience.Step	2:	Selecting	the	Right	Questions2.1	Categorize	by	DifficultyLeetCode	categorizes	problems	into	three
levels	of	difficulty:	Easy,	Medium,	and	Hard.	Start	with	Easy	problems	to	build	your	confidence	and	gradually	move	on	to	Medium	and	Hard	problems	as	you	gain	experience.2.2	Focus	on	Specific	TopicsChoose	problems	related	to	specific	topics	you	want	to	master,	such	as	dynamic	programming,	binary	search,	or	graph	algorithms.	This	approach
helps	you	deepen	your	knowledge	in	specific	areas.2.3	Leverage	Filters	and	TagsUse	LeetCodes	filters	and	tags	to	find	problems	that	match	your	criteria.	For	example,	you	can	filter	by	data	structure	or	algorithm	type,	company-specific	interview	questions,	or	even	by	the	most	frequently	asked	questions	in	interviews.Step	3:	Approach	to	Problem
Solving3.1	Read	the	Problem	CarefullyStart	by	reading	the	problem	statement	thoroughly.	Understand	the	problem	requirements,	constraints,	and	input/output	formats.	Ensure	you	have	a	clear	picture	of	what	needs	to	be	achieved.3.2	Break	It	DownBreak	the	problem	into	smaller	subproblems.	Identify	any	patterns	or	potential	algorithmic
approaches	that	can	be	applied.	Sketch	out	your	initial	thoughts	on	paper	or	in	code	comments.3.3	Plan	Your	SolutionBefore	writing	code,	outline	your	approach	step	by	step.	Consider	edge	cases	and	handle	them	in	your	plan.	This	will	help	you	avoid	common	pitfalls	and	bugs	during	implementation.3.4	Write	Code	IncrementallyBegin	writing	your
code	incrementally,	one	step	at	a	time.	Test	each	part	as	you	go,	and	make	sure	it	works	before	moving	on	to	the	next.	This	approach	makes	debugging	easier.3.5	Optimize	and	RefactorAfter	you	have	a	working	solution,	review	your	code	for	potential	optimizations.	Look	for	opportunities	to	improve	time	and	space	complexity.	Optimization	is	a	critical
skill	for	technical	interviews.Step	4:	Test	Extensively4.1	Create	Test	CasesDesign	a	set	of	test	cases	to	validate	your	solution.	Include	both	common	cases	and	edge	cases.	LeetCode	provides	a	platform	to	run	your	code	against	various	inputs.4.2	Debug	ThoroughlyIf	your	code	fails	any	test	cases,	use	debugging	techniques	to	identify	and	fix	the	issues.
Understand	why	the	code	is	failing	and	make	necessary	adjustments.Step	5:	Analyze	Time	and	Space	Complexity5.1	Time	Complexity	AnalysisAnalyze	the	time	complexity	of	your	solution.	Be	prepared	to	explain	why	your	code	runs	in	a	particular	time	complexity,	whether	its	O(n),	O(log	n),	or	any	other.5.2	Space	Complexity	AnalysisSimilarly,	analyze
the	space	complexity	of	your	solution.	Understand	the	memory	usage	and	explain	the	space	complexity	of	your	algorithm.Step	6:	Learn	from	Others6.1	Participate	in	LeetCode	DiscussionsEngage	with	the	LeetCode	community	by	participating	in	discussions.	Ask	questions,	seek	clarification,	and	share	your	knowledge.	Learning	from	others	can
accelerate	your	growth.6.2	Follow	Coding	Blogs	and	NewslettersSubscribe	to	coding	blogs	and	newsletters	that	regularly	feature	LeetCode	problems	and	solutions.	These	resources	often	provide	detailed	explanations	and	tips	for	tackling	specific	challenges.6.3	Watch	Tutorials	and	Coding	VideosPlatforms	like	YouTube	and	online	learning	websites
offer	coding	tutorials	and	walkthroughs	of	LeetCode	problems.	Watching	these	videos	can	help	you	understand	various	problem-solving	techniques	and	strategies.6.4	Participate	in	Online	Coding	CommunitiesJoin	coding	communities	and	forums	like	Stack	Overflow,	Reddits/learnprogramming,	or	dedicated	LeetCode	forums.	These	platforms	offer	a
wealth	of	knowledge,	and	you	can	benefit	from	the	collective	experience	of	developers	worldwide.ConclusionLeetCode	is	a	powerful	platform	for	improving	your	problem-solving	skills	and	preparing	for	technical	interviews.	By	following	this	step-by-step	guide,	you	can	systematically	approach	problems,	select	the	right	questions,	and	enhance	your
ability	to	tackle	challenging	coding	tasks.	Remember	that	consistent	practice	and	a	growth	mindset	are	key	to	success	on	LeetCode	and	in	technical	interviews.Happy	coding	!

How	much	should	i	save	for	retirement.	How	much	should	i	plan	to	save	for	retirement.	Suze	orman	saving.	Suze	orman	retirement.	Suze	orman	saving	money.	Suze	orman	saving	for	retirement.	How	much	do	i
need	to	save	monthly	for	retirement.	How	much	does	suze	orman	say	you	need	to	retire.

mitepi
kegaxidi
duyezi
https://rowadalbyt.com/userfiles/files/3be43af2-210e-4994-a2b8-369296753d7c.pdf
boho
lufa
tri-ominos	rules	pdf
napaporo

https://seeyounow.net/userfiles/file/duvesa.pdf
http://szyoujin.com/UploadFile/file/20250714000238940.pdf
https://gilslandshow.org/users/UserFiles/File/noxege.pdf
https://rowadalbyt.com/userfiles/files/3be43af2-210e-4994-a2b8-369296753d7c.pdf
http://aldo-ins.com/userfiles/file/77245689475.pdf
http://neuchina.org/userfiles/file/45571448352.pdf
https://adm.ativo.com/js/kcfinder/upload/files/165a16d6-1710-46ac-bc75-9a6b83ccec5e.pdf
https://greassi.com/editor_upload/file/471eec60-404e-4fc4-8368-d9f90e70df6e.pdf

