
	

https://xidejaw.pofezaf.com/992775006924346409561807321944894872036647?pivawuzirolorisugofos=gegimagasuvefasevapatububegaridadorotoluxutuwebofidirokolegojonorekukipiwosafajowuderikiziwerixaduremirekuxilumenozizupewedojukanuraradokevamiwitibolofuzotetarazuzefumipezadogulawolebumojorotawabozezebotin&utm_kwd=embedded+systems+examples&fojedeworivowaxiruliwoteriwusijawowuwuzunubirurizuvudiwupovodaxifevilonanupebidoxuvovewekawamonive=sirobugekuvagekabetopuxibegebitubakiguvewomelonobejofubapavogowosufigoxupejivegiwexabakefazekelifezo




















Embedded	systems	examples

Embedded	systems	are	ubiquitous.	These	dedicated	small	computers	are	present	in	communications	systems,	vehicles,	manufacturing	machinery,	detection	systems,	and	many	machines	that	make	our	lives	easier.	The	open	nature	of	Android	Linux	and	its	availability	for	many	different	hardware	architectures	makes	it	an	excellent	candidate	for
embedded	platforms.	The	following	are	the	most	common	concepts	you	should	know	while	working	with	embedded	devices.	Bootloader	A	bootloader	is	a	small	piece	of	software	that	executes	soon	after	you	power	up	a	computer.	On	a	desktop	PC,	the	bootloader	resides	on	the	master	boot	record	(MBR)	of	the	hard	drive,	and	is	executed	after	the	PC
BIOS	performs	various	system	initializations.	The	bootloader	then	passes	system	information	to	the	kernel	(for	instance,	the	hard	drive	partition	to	mount	as	root)	and	then	executes	the	kernel.	In	an	embedded	system,	the	role	of	the	bootloader	is	more	complicated,	since	an	embedded	system	does	not	have	a	BIOS	to	perform	the	initial	system
configuration.	The	low-level	initialization	of	the	microprocessor,	memory	controllers,	and	other	board-specific	hardware	varies	from	board	to	board	and	CPU	to	CPU.	These	initializations	must	be	performed	before	a	kernel	image	can	execute.	At	a	minimum,	a	bootloader	for	an	embedded	system	performs	the	following	functions:	Initializes	the
hardware,	especially	the	memory	controller.	Provides	boot	parameters	for	the	operating	system	image.	Starts	the	operating	system	image.	Additionally,	most	bootloaders	also	provide	convenient	features	that	simplify	development	and	update	of	the	firmware,	such	as:	Reading	and	writing	arbitrary	memory	locations.	Uploading	new	binary	images	to
the	board's	RAM	via	a	serial	line	or	Ethernet.	Copying	binary	images	from	RAM	to	Flash	memory.	Kernel	The	kernel	is	the	fundamental	part	of	an	operating	system.	It	is	responsible	for	managing	the	resources	and	the	communication	between	hardware	and	software	components.	The	kernel	offers	hardware	abstraction	to	the	applications	and	provides
secure	access	to	the	system	memory.	It	also	includes	an	interrupt	handler	that	handles	all	requests	or	completed	I/O	operations.	Kernel	modules	Modules	are	pieces	of	code	that	can	be	loaded	and	unloaded	into	the	kernel	upon	demand.	They	extend	the	functionality	of	the	kernel	without	requiring	a	system	reboot.	For	example,	one	type	of	module	is
the	device	driver,	which	allows	the	kernel	to	access	hardware	connected	to	the	system.	Without	these	modules,	Linux	developers	would	have	to	build	monolithic	kernels	and	add	new	functionality	directly	into	the	kernel	image.	The	result	would	be	a	large,	cumbersome	kernel.	Another	disadvantage	of	working	without	a	kernel	module	is	that	you	would
have	to	rebuild	and	reboot	the	kernel	every	time	you	add	new	functionality.	In	embedded	systems,	where	functionality	can	be	activated	depending	on	the	needs,	kernel	modules	become	a	very	effective	way	of	adding	features	without	enlarging	the	kernel	image	size.	Root	file	system	Operating	systems	normally	rely	on	a	set	of	files	and	directories.	The
root	file	system	is	the	top	of	the	hierarchical	file	tree.	It	contains	the	files	and	directories	critical	for	system	operation,	including	the	device	directory	and	programs	for	booting	the	system.	The	root	file	system	also	contains	mount	points	where	other	file	systems	can	be	mounted	to	connect	to	the	root	file	system	hierarchy.	Applications	Software
applications	are	programs	that	employ	the	capabilities	and	resources	of	a	computer	to	do	a	particular	task.	Applications	make	use	of	hardware	devices	by	communicating	with	device	drivers,	which	are	part	of	the	kernel.	Cross-compilation	If	you	generate	code	for	an	embedded	target	on	a	development	system	with	a	different	microprocessor
architecture,	you	need	a	cross-development	environment.	A	cross-development	compiler	is	one	that	executes	in	the	development	system	(for	example,	an	x86	PC),	but	generates	code	that	executes	in	a	different	processor	(for	example,	if	the	target	is	ARM).


