
	

Continue

https://feedproxy.google.com/~r/Uplcv/~3/FevRqgeaUVY/uplcv?utm_term=structured+computer+organization+solutions+manual+pdf

Structured	computer	organization	solutions	manual	pdf

1	SOLUTIONS	MANUAL	COMPUTER	ORGANIZATION	AND	ARCHITECTURE	DESIGNING	FOR	PERFORMANCE	EIGHTH	EDITION	WILLIAM	STALLINGS	2	TABLE	OF	CONTENTS	Chapter	1	Introduction...5	Chapter	2	Computer	Evolution	and	Performance...6	Chapter	3	Computer	Function	and	Interconnection...14	Chapter	4	Cache	Memory...19
Chapter	5	Internal	Memory...32	Chapter	6	External	Memory...38	Chapter	7	Input/Output...43	Chapter	8	Operating	System	Support...50	Chapter	9	Computer	Arithmetic...57	Chapter	10	Instruction	Sets:	Characteristics	and	Functions...69	Chapter	11	Instruction	Sets:	Addressing	Modes	and	Formats...80	Chapter	12	Processor	Structure	and
Function...85	Chapter	13	Reduced	Instruction	Set	Computers...92	Chapter	14	Instruction-Level	Parallelism	and	Superscalar	Processors...97	Chapter	15	Control	Unit	Operation	Chapter	16	Microprogrammed	Control	Chapter	17	Parallel	Processing	Chapter	18	Multicore	Computers	Chapter	19	Number	Systems	Chapter	20	Digital	Logic	Chapter	21	The
IA-64	Architecture	Appendix	B	Assembly	Language	and	Related	Topics	3	CHAPTER	1	INTRODUCTION	A	NSWERS	TO	Q	UESTIONS	1.1	Computer	architecture	refers	to	those	attributes	of	a	system	visible	to	a	programmer	or,	put	another	way,	those	attributes	that	have	a	direct	impact	on	the	logical	execution	of	a	program.	Computer	organization
refers	to	the	operational	units	and	their	interconnections	that	realize	the	architectural	specifications.	Examples	of	architectural	attributes	include	the	instruction	set,	the	number	of	bits	used	to	represent	various	data	types	(e.g.,	numbers,	characters),	I/O	mechanisms,	and	techniques	for	addressing	memory.	Organizational	attributes	include	those
hardware	details	transparent	to	the	programmer,	such	as	control	signals;	interfaces	between	the	computer	and	peripherals;	and	the	memory	technology	used.	1.2	Computer	structure	refers	to	the	way	in	which	the	components	of	a	computer	are	interrelated.	Computer	function	refers	to	the	operation	of	each	individual	component	as	part	of	the
structure.	1.3	Data	processing;	data	storage;	data	movement;	and	control.	1.4	Central	processing	unit	(CPU):	Controls	the	operation	of	the	computer	and	performs	its	data	processing	functions;	often	simply	referred	to	as	processor.	Main	memory:	Stores	data.	I/O:	Moves	data	between	the	computer	and	its	external	environment.	System
interconnection:	Some	mechanism	that	provides	for	communication	among	CPU,	main	memory,	and	I/O.	A	common	example	of	system	interconnection	is	by	means	of	a	system	bus,	consisting	of	a	number	of	conducting	wires	to	which	all	the	other	components	attach.	1.5	Control	unit:	Controls	the	operation	of	the	CPU	and	hence	the	computer
Arithmetic	and	logic	unit	(ALU):	Performs	the	computer	s	data	processing	functions	Registers:	Provides	storage	internal	to	the	CPU	CPU	interconnection:	Some	mechanism	that	provides	for	communication	among	the	control	unit,	ALU,	and	registers	-5-	4	CHAPTER	2	COMPUTER	EVOLUTION	AND	PERFORMANCE	A	NSWERS	TO	Q	UESTIONS	2.1	In
a	stored	program	computer,	programs	are	represented	in	a	form	suitable	for	storing	in	memory	alongside	the	data.	The	computer	gets	its	instructions	by	reading	them	from	memory,	and	a	program	can	be	set	or	altered	by	setting	the	values	of	a	portion	of	memory.	2.2	A	main	memory,	which	stores	both	data	and	instructions:	an	arithmetic	and	logic
unit	(ALU)	capable	of	operating	on	binary	data;	a	control	unit,	which	interprets	the	instructions	in	memory	and	causes	them	to	be	executed;	and	input	and	output	(I/O)	equipment	operated	by	the	control	unit.	2.3	Gates,	memory	cells,	and	interconnections	among	gates	and	memory	cells.	2.4	Moore	observed	that	the	number	of	transistors	that	could	be
put	on	a	single	chip	was	doubling	every	year	and	correctly	predicted	that	this	pace	would	continue	into	the	near	future.	2.5	Similar	or	identical	instruction	set:	In	many	cases,	the	same	set	of	machine	instructions	is	supported	on	all	members	of	the	family.	Thus,	a	program	that	executes	on	one	machine	will	also	execute	on	any	other.	Similar	or
identical	operating	system:	The	same	basic	operating	system	is	available	for	all	family	members.	Increasing	speed:	The	rate	of	instruction	execution	increases	in	going	from	lower	to	higher	family	members.	Increasing	Number	of	I/O	ports:	In	going	from	lower	to	higher	family	members.	Increasing	memory	size:	In	going	from	lower	to	higher	family
members.	Increasing	cost:	In	going	from	lower	to	higher	family	members.	2.6	In	a	microprocessor,	all	of	the	components	of	the	CPU	are	on	a	single	chip.	A	NSWERS	TO	P	ROBLEMS	2.1	This	program	is	developed	in	[HAYE98].	The	vectors	A,	B,	and	C	are	each	stored	in	1,000	contiguous	locations	in	memory,	beginning	at	locations	1001,	2001,	and
3001,	respectively.	The	program	begins	with	the	left	half	of	location	3.	A	counting	variable	N	is	set	to	999	and	decremented	after	each	step	until	it	reaches	1.	Thus,	the	vectors	are	processed	from	high	location	to	low	location.	-6-	5	Location	Instruction	Comments	Constant	(count	N)	1	1	Constant	Constant	3L	LOAD	M(2000)	Transfer	A(I)	to	AC	3R	ADD
M(3000)	Compute	A(I)	+	B(I)	4L	STOR	M(4000)	Transfer	sum	to	C(I)	4R	LOAD	M(0)	Load	count	N	5L	SUB	M(1)	Decrement	N	by	1	5R	JUMP+	M(6,	20:39)	Test	N	and	branch	to	6R	if	nonnegative	6L	JUMP	M(6,	0:19)	Halt	6R	STOR	M(0)	Update	N	7L	ADD	M(1)	Increment	AC	by	1	7R	ADD	M(2)	8L	STOR	M(3,	8:19)	Modify	address	in	3L	8R	ADD	M(2)	9L
STOR	M(3,	28:39)	Modify	address	in	3R	9R	ADD	M(2)	10L	STOR	M(4,	8:19)	Modify	address	in	4L	10R	JUMP	M(3,	0:19)	Branch	to	3L	2.2	a.	Opcode	Operand	b.	First,	the	CPU	must	make	access	memory	to	fetch	the	instruction.	The	instruction	contains	the	address	of	the	data	we	want	to	load.	During	the	execute	phase	accesses	memory	to	load	the	data
value	located	at	that	address	for	a	total	of	two	trips	to	memory.	2.3	To	read	a	value	from	memory,	the	CPU	puts	the	address	of	the	value	it	wants	into	the	MAR.	The	CPU	then	asserts	the	Read	control	line	to	memory	and	places	the	address	on	the	address	bus.	Memory	places	the	contents	of	the	memory	location	passed	on	the	data	bus.	This	data	is	then
transferred	to	the	MBR.	To	write	a	value	to	memory,	the	CPU	puts	the	address	of	the	value	it	wants	to	write	into	the	MAR.	The	CPU	also	places	the	data	it	wants	to	write	into	the	MBR.	The	CPU	then	asserts	the	Write	control	line	to	memory	and	places	the	address	on	the	address	bus	and	the	data	on	the	data	bus.	Memory	transfers	the	data	on	the	data
bus	into	the	corresponding	memory	location.	-7-	6	2.4	Address	08A	08B	08C	08D	Contents	LOAD	M(0FA)	STOR	M(0FB)	LOAD	M(0FA)	JUMP	+M(08D)	LOAD	M(0FA)	STOR	M(0FB)	This	program	will	store	the	absolute	value	of	content	at	memory	location	0FA	into	memory	location	0FB.	2.5	All	data	paths	to/from	MBR	are	40	bits.	All	data	paths	to/from
MAR	are	12	bits.	Paths	to/from	AC	are	40	bits.	Paths	to/from	MQ	are	40	bits.	2.6	The	purpose	is	to	increase	performance.	When	an	address	is	presented	to	a	memory	module,	there	is	some	time	delay	before	the	read	or	write	operation	can	be	performed.	While	this	is	happening,	an	address	can	be	presented	to	the	other	module.	For	a	series	of	requests
for	successive	words,	the	maximum	rate	is	doubled.	2.7	The	discrepancy	can	be	explained	by	noting	that	other	system	components	aside	from	clock	speed	make	a	big	difference	in	overall	system	speed.	In	particular,	memory	systems	and	advances	in	I/O	processing	contribute	to	the	performance	ratio.	A	system	is	only	as	fast	as	its	slowest	link.	In
recent	years,	the	bottlenecks	have	been	the	performance	of	memory	modules	and	bus	speed.	2.8	As	noted	in	the	answer	to	Problem	2.7,	even	though	the	Intel	machine	may	have	a	faster	clock	speed	(2.4	GHz	vs.	1.2	GHz),	that	does	not	necessarily	mean	the	system	will	perform	faster.	Different	systems	are	not	comparable	on	clock	speed.	Other	factors
such	as	the	system	components	(memory,	buses,	architecture)	and	the	instruction	sets	must	also	be	taken	into	account.	A	more	accurate	measure	is	to	run	both	systems	on	a	benchmark.	Benchmark	programs	exist	for	certain	tasks,	such	as	running	office	applications,	performing	floating-point	operations,	graphics	operations,	and	so	on.	The	systems
can	be	compared	to	each	other	on	how	long	they	take	to	complete	these	tasks.	According	to	Apple	Computer,	the	G4	is	comparable	or	better	than	a	higher-clock	speed	Pentium	on	many	benchmarks.	2.9	This	representation	is	wasteful	because	to	represent	a	single	decimal	digit	from	0	through	9	we	need	to	have	ten	tubes.	If	we	could	have	an	arbitrary
number	of	these	tubes	ON	at	the	same	time,	then	those	same	tubes	could	be	treated	as	binary	bits.	With	ten	bits,	we	can	represent	2	10	patterns,	or	1024	patterns.	For	integers,	these	patterns	could	be	used	to	represent	the	numbers	from	0	through	CPI	=	1.55;	MIPS	rate	=	25.8;	Execution	time	=	3.87	ns.	Source:	[HWAN93]	-8-	7	2.11	a.	()	()	10	6
CPI	i	I	i	CPI	A	=	=	I	c	MIPS	A	=	CPU	A	=	I	c	CPI	A	f	CPI	B	=	MIPS	B	=	f	=	6	CPI	A	=	90	6	CPI	i	I	i	I	c	=	CPU	B	=	I	c	CPI	B	f	=	=	0.2	s	()	f	=	6	CPI	B	=104	6	()	=	=	0.23	s	b.	Although	machine	B	has	a	higher	MIPS	than	machine	A,	it	requires	a	longer	CPU	time	to	execute	the	same	set	of	benchmark	programs	a.	We	can	express	the	MIPs	rate	as:	[(MIPS
rate)/10	6]	=	I	c	/T.	So	that:	I	c	=	T	[(MIPS	rate)/10	6].	The	ratio	of	the	instruction	count	of	the	RS/6000	to	the	VAX	is	[x	18]/[12x	1]	=	1.5.	b.	For	the	Vax,	CPI	=	(5	MHz)/(1	MIPS)	=	5.	For	the	RS/6000,	CPI	=	25/18	=	From	Equation	(2.2),	MIPS	=	I	c	/(T	10	6)	=	100/T.	The	MIPS	values	are:	Computer	A	Computer	B	Computer	C	Program	Program
Program	Program	Arithmetic	mean	Rank	Harmonic	mean	Computer	A	Computer	B	Computer	C	Rank	-9-	8	2.14	a.	Normalized	to	R:	Benchmark	Processor	R	M	Z	E	F	H	I	K	Arithmetic	mean	b.	Normalized	to	M:	Benchmark	Processor	R	M	Z	E	F	H	I	K	Arithmetic	mean	c.	Recall	that	the	larger	the	ratio,	the	higher	the	speed.	Based	on	(a)	R	is	the	slowest
machine,	by	a	significant	amount.	Based	on	(b),	M	is	the	slowest	machine,	by	a	modest	amount.	d.	Normalized	to	R:	Benchmark	Processor	R	M	Z	E	F	H	I	K	Geometric	mean	9	Normalized	to	M:	Benchmark	-11-	Processor	R	M	Z	E	F	H	I	K	Geometric	mean	Using	the	geometric	mean,	R	is	the	slowest	no	matter	which	machine	is	used	for	normalization	a.
Normalized	to	X:	Benchmark	Processor	X	Y	Z	Arithmetic	mean	Geometric	mean	Normalized	to	Y:	Benchmark	Processor	X	Y	Z	Arithmetic	mean	Geometric	mean	Machine	Y	is	twice	as	fast	as	machine	X	for	benchmark	1,	but	half	as	fast	for	benchmark	2.	Similarly	machine	Z	is	half	as	fast	as	X	for	benchmark	1,	but	twice	as	fast	for	benchmark	2.
Intuitively,	these	three	machines	have	equivalent	performance.	However,	if	we	normalize	to	X	and	compute	the	arithmetic	mean	10	of	the	speed	metric,	we	find	that	Y	and	Z	are	25%	faster	than	X.	Now,	if	we	normalize	to	Y	and	compute	the	arithmetic	mean	of	the	speed	metric,	we	find	that	X	is	25%	faster	than	Y	and	Z	is	more	than	twice	as	fast	as	Y.
Clearly,	the	arithmetic	mean	is	worthless	in	this	context.	b.	When	the	geometric	mean	is	used,	the	three	machines	are	shown	to	have	equal	performance	when	normalized	to	X,	and	also	equal	performance	when	normalized	to	Y.	These	results	are	much	more	in	line	with	our	intuition	a.	Assuming	the	same	instruction	mix	means	that	the	additional
instructions	for	each	task	should	be	allocated	proportionally	among	the	instruction	types.	So	we	have	the	following	table:	Instruction	Type	CPI	Instruction	Mix	Arithmetic	and	logic	1	60%	Load/store	with	cache	hit	2	18%	Branch	4	12%	Memory	reference	with	cache	miss	12	10%	CPI	=	(2	0.18)	+	(4	0.12)	+	(12	0.1)	=	The	CPI	has	increased	due	to	the
increased	time	for	memory	access.	b.	MIPS	=	400/2.64	=	152.	There	is	a	corresponding	drop	in	the	MIPS	rate.	c.	The	speedup	factor	is	the	ratio	of	the	execution	times.	Using	Equation	2.2,	we	calculate	the	execution	time	as	T	=	I	c	/(MIPS	10	6).	For	the	single-processor	case,	T	1	=	()/()	=	11	ms.	With	8	processors,	each	processor	executes	1/8	of	the
2	million	instructions	plus	the	25,000	overhead	instructions.	For	this	case,	the	execution	time	for	each	of	the	8	processors	is	T	8	=	8	=1.8	ms	Therefore	we	have	time	to	execute	program	on	a	single	processor	Speedup	=	time	to	execute	program	on	N	parallel	processors	=	=	6.11	d.	The	answer	to	this	question	depends	on	how	we	interpret	Amdahl's'
law.	There	are	two	inefficiencies	in	the	parallel	system.	First,	there	are	additional	instructions	added	to	coordinate	between	threads.	Second,	there	is	contention	for	memory	access.	The	way	that	the	problem	is	stated,	none	of	the	code	is	inherently	serial.	All	of	it	is	parallelizable,	but	with	scheduling	overhead.	One	could	argue	that	the	memory	access
conflict	means	that	to	some	extent	memory	reference	instructions	are	not	parallelizable.	But	based	on	the	information	given,	it	is	not	clear	how	to	quantify	this	effect	in	Amdahl's	equation.	If	we	assume	that	the	fraction	of	code	that	is	parallelizable	is	f	=	1,	then	Amdahl's	law	reduces	to	Speedup	=	N	=8	for	this	case.	Thus	the	actual	speedup	is	only
about	75%	of	the	theoretical	speedup.	-12-	11	2.17	a.	Speedup	=	(time	to	access	in	main	memory)/(time	to	access	in	cache)	=	T	2	/T	1.	b.	The	average	access	time	can	be	computed	as	T	=	H	T	1	+	(1	H)	T	2	Using	Equation	(2.8):	Speedup	=	Execution	time	before	enhancement	Execution	time	after	enhancement	=	T	2	T	=	T	2	=	H	T	1	+	(1	H)T	2	1	(1
H)	+	H	T	1	T	2	c.	T	=	H	T	1	+	(1	H)	(T	1	+	T	2)	=	T	1	+	(1	H)	T	2)	This	is	Equation	(4.2)	in	Chapter	4.	Now,	Speedup	=	Execution	time	before	enhancement	Execution	time	after	enhancement	=	T	2	T	=	T	2	=	T	1	+	(1	H)T	2	1	H	()	+	T	1	T	2	In	this	case,	the	denominator	is	larger,	so	that	the	speedup	is	less	12	CHAPTER	3	COMPUTER	FUNCTION
AND	INTERCONNECTION	A	NSWERS	TO	Q	UESTIONS	3.1	Processor-memory:	Data	may	be	transferred	from	processor	to	memory	or	from	memory	to	processor.	Processor-I/O:	Data	may	be	transferred	to	or	from	a	peripheral	device	by	transferring	between	the	processor	and	an	I/O	module.	Data	processing:	The	processor	may	perform	some
arithmetic	or	logic	operation	on	data.	Control:	An	instruction	may	specify	that	the	sequence	of	execution	be	altered.	3.2	Instruction	address	calculation	(iac):	Determine	the	address	of	the	next	instruction	to	be	executed.	Instruction	fetch	(if):	Read	instruction	from	its	memory	location	into	the	processor.	Instruction	operation	decoding	(iod):	Analyze
instruction	to	determine	type	of	operation	to	be	performed	and	operand(s)	to	be	used.	Operand	address	calculation	(oac):	If	the	operation	involves	reference	to	an	operand	in	memory	or	available	via	I/O,	then	determine	the	address	of	the	operand.	Operand	fetch	(of):	Fetch	the	operand	from	memory	or	read	it	in	from	I/O.	Data	operation	(do):	Perform
the	operation	indicated	in	the	instruction.	Operand	store	(os):	Write	the	result	into	memory	or	out	to	I/O.	3.3	(1)	Disable	all	interrupts	while	an	interrupt	is	being	processed.	(2)	Define	priorities	for	interrupts	and	to	allow	an	interrupt	of	higher	priority	to	cause	a	lower-priority	interrupt	handler	to	be	interrupted.	3.4	Memory	to	processor:	The	processor
reads	an	instruction	or	a	unit	of	data	from	memory.	Processor	to	memory:	The	processor	writes	a	unit	of	data	to	memory.	I/O	to	processor:	The	processor	reads	data	from	an	I/O	device	via	an	I/O	module.	Processor	to	I/O:	The	processor	sends	data	to	the	I/O	device.	I/O	to	or	from	memory:	For	these	two	cases,	an	I/O	module	is	allowed	to	exchange	data
directly	with	memory,	without	going	through	the	processor,	using	direct	memory	access	(DMA).	3.5	With	multiple	buses,	there	are	fewer	devices	per	bus.	This	(1)	reduces	propagation	delay,	because	each	bus	can	be	shorter,	and	(2)	reduces	bottleneck	effects.	3.6	System	pins:	Include	the	clock	and	reset	pins.	Address	and	data	pins:	Include	32	lines
that	are	time	multiplexed	for	addresses	and	data.	Interface	control	pins:	Control	the	timing	of	transactions	and	provide	coordination	among	initiators	and	targets.	Arbitration	pins:	Unlike	the	other	PCI	signal	lines,	these	are	not	shared	lines.	Rather,	each	PCI	master	has	its	own	pair	of	arbitration	lines	that	connect	it	directly	to	the	PCI	bus	arbiter.
Error	Reporting	pins:	Used	to	report	parity	and	-14-	13	other	errors.	Interrupt	Pins:	These	are	provided	for	PCI	devices	that	must	generate	requests	for	service.	Cache	support	pins:	These	pins	are	needed	to	support	a	memory	on	PCI	that	can	be	cached	in	the	processor	or	another	device.	64-bit	Bus	extension	pins:	Include	32	lines	that	are	time
multiplexed	for	addresses	and	data	and	that	are	combined	with	the	mandatory	address/data	lines	to	form	a	64-bit	address/data	bus.	JTAG/Boundary	Scan	Pins:	These	signal	lines	support	testing	procedures	defined	in	IEEE	Standard	A	NSWERS	TO	P	ROBLEMS	3.1	Memory	(contents	in	hex):	300:	3005;	301:	5940;	302:	7006	Step	1:	3005	IR;	Step	2:	3
AC	Step	3:	5940	IR;	Step	4:	=	5	AC	Step	5:	7006	IR;	Step	6:	AC	Device	a.	The	PC	contains	300,	the	address	of	the	first	instruction.	This	value	is	loaded	in	to	the	MAR.	b.	The	value	in	location	300	(which	is	the	instruction	with	the	value	1940	in	hexadecimal)	is	loaded	into	the	MBR,	and	the	PC	is	incremented.	These	two	steps	can	be	done	in	parallel.	c.
The	value	in	the	MBR	is	loaded	into	the	IR.	2.	a.	The	address	portion	of	the	IR	(940)	is	loaded	into	the	MAR.	b.	The	value	in	location	940	is	loaded	into	the	MBR.	c.	The	value	in	the	MBR	is	loaded	into	the	AC.	3.	a.	The	value	in	the	PC	(301)	is	loaded	in	to	the	MAR.	b.	The	value	in	location	301	(which	is	the	instruction	with	the	value	5941)	is	loaded	into
the	MBR,	and	the	PC	is	incremented.	c.	The	value	in	the	MBR	is	loaded	into	the	IR.	4.	a.	The	address	portion	of	the	IR	(941)	is	loaded	into	the	MAR.	b.	The	value	in	location	941	is	loaded	into	the	MBR.	c.	The	old	value	of	the	AC	and	the	value	of	location	MBR	are	added	and	the	result	is	stored	in	the	AC.	5.	a.	The	value	in	the	PC	(302)	is	loaded	in	to	the
MAR.	b.	The	value	in	location	302	(which	is	the	instruction	with	the	value	2941)	is	loaded	into	the	MBR,	and	the	PC	is	incremented.	c.	The	value	in	the	MBR	is	loaded	into	the	IR.	6.	a.	The	address	portion	of	the	IR	(941)	is	loaded	into	the	MAR.	b.	The	value	in	the	AC	is	loaded	into	the	MBR.	c.	The	value	in	the	MBR	is	stored	in	location	a	=	16	MBytes	b.
(1)	If	the	local	address	bus	is	32	bits,	the	whole	address	can	be	transferred	at	once	and	decoded	in	memory.	However,	because	the	data	bus	is	only	16	bits,	it	will	require	2	cycles	to	fetch	a	32-bit	instruction	or	operand.	(2)	The	16	bits	of	the	address	placed	on	the	address	bus	can't	access	the	whole	memory.	Thus	a	more	complex	memory	interface
control	is	needed	to	latch	the	first	part	of	the	address	and	then	the	second	part	(because	the	microprocessor	will	end	in	two	steps).	For	a	32-bit	address,	one	may	assume	the	first	half	will	decode	to	access	a	"row"	in	memory,	while	the	second	half	is	sent	later	to	access	-15-	14	a	"column"	in	memory.	In	addition	to	the	two-step	address	operation,	the
microprocessor	will	need	2	cycles	to	fetch	the	32	bit	instruction/operand.	c.	The	program	counter	must	be	at	least	24	bits.	Typically,	a	32-bit	microprocessor	will	have	a	32-bit	external	address	bus	and	a	32-bit	program	counter,	unless	onchip	segment	registers	are	used	that	may	work	with	a	smaller	program	counter.	If	the	instruction	register	is	to
contain	the	whole	instruction,	it	will	have	to	be	32-bits	long;	if	it	will	contain	only	the	op	code	(called	the	op	code	register)	then	it	will	have	to	be	8	bits	long.	3.4	In	cases	(a)	and	(b),	the	microprocessor	will	be	able	to	access	2	16	=	64K	bytes;	the	only	difference	is	that	with	an	8-bit	memory	each	access	will	transfer	a	byte,	while	with	a	16-bit	memory	an
access	may	transfer	a	byte	or	a	16-byte	word.	For	case	(c),	separate	input	and	output	instructions	are	needed,	whose	execution	will	generate	separate	"I/O	signals"	(different	from	the	"memory	signals"	generated	with	the	execution	of	memory-type	instructions);	at	a	minimum,	one	additional	output	pin	will	be	required	to	carry	this	new	signal.	For	case
(d),	it	can	support	2	8	=	256	input	and	2	8	=	256	output	byte	ports	and	the	same	number	of	input	and	output	16-bit	ports;	in	either	case,	the	distinction	between	an	input	and	an	output	port	is	defined	by	the	different	signal	that	the	executed	input	or	output	instruction	generated	Clock	cycle	=	=	125	ns	8	MHz	Bus	cycle	=	ns	=	500	ns	2	bytes
transferred	every	500	ns;	thus	transfer	rate	=	4	MBytes/sec	Doubling	the	frequency	may	mean	adopting	a	new	chip	manufacturing	technology	(assuming	each	instructions	will	have	the	same	number	of	clock	cycles);	doubling	the	external	data	bus	means	wider	(maybe	newer)	on-chip	data	bus	drivers/latches	and	modifications	to	the	bus	control	logic.
In	the	first	case,	the	speed	of	the	memory	chips	will	also	need	to	double	(roughly)	not	to	slow	down	the	microprocessor;	in	the	second	case,	the	"wordlength"	of	the	memory	will	have	to	double	to	be	able	to	send/receive	32-bit	quantities.	3.6	a.	Input	from	the	Teletype	is	stored	in	INPR.	The	INPR	will	only	accept	data	from	the	Teletype	when	FGI=0.
When	data	arrives,	it	is	stored	in	INPR,	and	FGI	is	set	to	1.	The	CPU	periodically	checks	FGI.	If	FGI	=1,	the	CPU	transfers	the	contents	of	INPR	to	the	AC	and	sets	FGI	to	0.	When	the	CPU	has	data	to	send	to	the	Teletype,	it	checks	FGO.	If	FGO	=	0,	the	CPU	must	wait.	If	FGO	=	1,	the	CPU	transfers	the	contents	of	the	AC	to	OUTR	and	sets	FGO	to	0.
The	Teletype	sets	FGI	to	1	after	the	word	is	printed.	b.	The	process	described	in	(a)	is	very	wasteful.	The	CPU,	which	is	much	faster	than	the	Teletype,	must	repeatedly	check	FGI	and	FGO.	If	interrupts	are	used,	the	Teletype	can	issue	an	interrupt	to	the	CPU	whenever	it	is	ready	to	accept	or	send	data.	The	IEN	register	can	be	set	by	the	CPU	(under
programmer	control)	3.7	a.	During	a	single	bus	cycle,	the	8-bit	microprocessor	transfers	one	byte	while	the	16-bit	microprocessor	transfers	two	bytes.	The	16-bit	microprocessor	has	twice	the	data	transfer	rate.	b.	Suppose	we	do	100	transfers	of	operands	and	instructions,	of	which	50	are	one	byte	long	and	50	are	two	bytes	long.	The	8-bit
microprocessor	takes	50	+	(2	x	-16-	15	50)	=	150	bus	cycles	for	the	transfer.	The	16-bit	microprocessor	requires	=	100	bus	cycles.	Thus,	the	data	transfer	rates	differ	by	a	factor	of	The	whole	point	of	the	clock	is	to	define	event	times	on	the	bus;	therefore,	we	wish	for	a	bus	arbitration	operation	to	be	made	each	clock	cycle.	This	requires	that	the
priority	signal	propagate	the	length	of	the	daisy	chain	(Figure	3.26)	in	one	clock	period.	Thus,	the	maximum	number	of	masters	is	determined	by	dividing	the	amount	of	time	it	takes	a	bus	master	to	pass	through	the	bus	priority	by	the	clock	period.	3.9	The	lowest-priority	device	is	assigned	priority	16.	This	device	must	defer	to	all	the	others.	However,
it	may	transmit	in	any	slot	not	reserved	by	the	other	SBI	devices	At	the	beginning	of	any	slot,	if	none	of	the	TR	lines	is	asserted,	only	the	priority	16	device	may	transmit.	This	gives	it	the	lowest	average	wait	time	under	most	circumstances.	Only	when	there	is	heavy	demand	on	the	bus,	which	means	that	most	of	the	time	there	is	at	least	one	pending
request,	will	the	priority	16	device	not	have	the	lowest	average	wait	time	a.	With	a	clocking	frequency	of	10	MHz,	the	clock	period	is	10	9	s	=	100	ns.	The	length	of	the	memory	read	cycle	is	300	ns.	b.	The	Read	signal	begins	to	fall	at	75	ns	from	the	beginning	of	the	third	clock	cycle	(middle	of	the	second	half	of	T	3).	Thus,	memory	must	place	the	data
on	the	bus	no	later	than	55	ns	from	the	beginning	of	T	a.	The	clock	period	is	125	ns.	Therefore,	two	clock	cycles	need	to	be	inserted.	b.	From	Figure	3.19,	the	Read	signal	begins	to	rise	early	in	T	2.	To	insert	two	clock	cycles,	the	Ready	line	can	be	put	in	low	at	the	beginning	of	T	2	and	kept	low	for	250	ns	a.	A	5	MHz	clock	corresponds	to	a	clock	period
of	200	ns.	Therefore,	the	Write	signal	has	a	duration	of	150	ns.	b.	The	data	remain	valid	for	=	170	ns.	c.	One	wait	state	a.	Without	the	wait	states,	the	instruction	takes	16	bus	clock	cycles.	The	instruction	requires	four	memory	accesses,	resulting	in	8	wait	states.	The	instruction,	with	wait	states,	takes	24	clock	cycles,	for	an	increase	of	50%.	b.	In	this
case,	the	instruction	takes	26	bus	cycles	without	wait	states	and	34	bus	cycles	with	wait	states,	for	an	increase	of	33%	a.	The	clock	period	is	125	ns.	One	bus	read	cycle	takes	500	ns	=	0.5	µs.	If	the	bus	cycles	repeat	one	after	another,	we	can	achieve	a	data	transfer	rate	of	2	MB/s.	b.	The	wait	state	extends	the	bus	read	cycle	by	125	ns,	for	a	total
duration	of	µs.	The	corresponding	data	transfer	rate	is	1/0.625	=	1.6	MB/s	A	bus	cycle	takes	0.25	µs,	so	a	memory	cycle	takes	1	µs.	If	both	operands	are	evenaligned,	it	takes	2	µs	to	fetch	the	two	operands.	If	one	is	odd-aligned,	the	time	required	is	3	µs.	If	both	are	odd-aligned,	the	time	required	is	4	µs.	-17-	16	3.17	Consider	a	mix	of	100	instructions
and	operands.	On	average,	they	consist	of	bit	items,	bit	items,	and	40	bytes.	The	number	of	bus	cycles	required	for	the	16-bit	microprocessor	is	(2	20)	=	120.	For	the	32-bit	microprocessor,	the	number	required	is	100.	This	amounts	to	an	improvement	of	20/120	or	about	17%	The	processor	needs	another	nine	clock	cycles	to	complete	the	instruction.
Thus,	the	Interrupt	Acknowledge	will	start	after	900	ns	CLK	FRAME#	AD	Address	Data-1	Data-2	Data-3	C/BE#	Bus	Cmd	Byte	Enable	Byte	Enable	Byte	Enable	IRDY#	TRDY#	DEVSEL#	Address	PhaseAddress	PhaseAddress	Phase	Address	Phase	Bus	Transaction	Wait	State	Wait	State	Wait	State	-18-	17	CHAPTER	4	CACHE	MEMORY	A	NSWERS	TO	Q
UESTIONS	4.1	Sequential	access:	Memory	is	organized	into	units	of	data,	called	records.	Access	must	be	made	in	a	specific	linear	sequence.	Direct	access:	Individual	blocks	or	records	have	a	unique	address	based	on	physical	location.	Access	is	accomplished	by	direct	access	to	reach	a	general	vicinity	plus	sequential	searching,	counting,	or	waiting	to
reach	the	final	location.	Random	access:	Each	addressable	location	in	memory	has	a	unique,	physically	wired-in	addressing	mechanism.	The	time	to	access	a	given	location	is	independent	of	the	sequence	of	prior	accesses	and	is	constant.	4.2	Faster	access	time,	greater	cost	per	bit;	greater	capacity,	smaller	cost	per	bit;	greater	capacity,	slower	access
time.	4.3	It	is	possible	to	organize	data	across	a	memory	hierarchy	such	that	the	percentage	of	accesses	to	each	successively	lower	level	is	substantially	less	than	that	of	the	level	above.	Because	memory	references	tend	to	cluster,	the	data	in	the	higherlevel	memory	need	not	change	very	often	to	satisfy	memory	access	requests.	4.4	In	a	cache	system,
direct	mapping	maps	each	block	of	main	memory	into	only	one	possible	cache	line.	Associative	mapping	permits	each	main	memory	block	to	be	loaded	into	any	line	of	the	cache.	In	set-associative	mapping,	the	cache	is	divided	into	a	number	of	sets	of	cache	lines;	each	main	memory	block	can	be	mapped	into	any	line	in	a	particular	set.	4.5	One	field
identifies	a	unique	word	or	byte	within	a	block	of	main	memory.	The	remaining	two	fields	specify	one	of	the	blocks	of	main	memory.	These	two	fields	are	a	line	field,	which	identifies	one	of	the	lines	of	the	cache,	and	a	tag	field,	which	identifies	one	of	the	blocks	that	can	fit	into	that	line.	4.6	A	tag	field	uniquely	identifies	a	block	of	main	memory.	A	word
field	identifies	a	unique	word	or	byte	within	a	block	of	main	memory.	4.7	One	field	identifies	a	unique	word	or	byte	within	a	block	of	main	memory.	The	remaining	two	fields	specify	one	of	the	blocks	of	main	memory.	These	two	fields	are	a	set	field,	which	identifies	one	of	the	sets	of	the	cache,	and	a	tag	field,	which	identifies	one	of	the	blocks	that	can
fit	into	that	set.	4.8	Spatial	locality	refers	to	the	tendency	of	execution	to	involve	a	number	of	memory	locations	that	are	clustered.	Temporal	locality	refers	to	the	tendency	for	a	processor	to	access	memory	locations	that	have	been	used	recently.	-19-	18	4.9	Spatial	locality	is	generally	exploited	by	using	larger	cache	blocks	and	by	incorporating
prefetching	mechanisms	(fetching	items	of	anticipated	use)	into	the	cache	control	logic.	Temporal	locality	is	exploited	by	keeping	recently	used	instruction	and	data	values	in	cache	memory	and	by	exploiting	a	cache	hierarchy.	A	NSWERS	TO	P	ROBLEMS	4.1	The	cache	is	divided	into	16	sets	of	4	lines	each.	Therefore,	4	bits	are	needed	to	identify	the
set	number.	Main	memory	consists	of	4K	=	2	12	blocks.	Therefore,	the	set	plus	tag	lengths	must	be	12	bits	and	therefore	the	tag	length	is	8	bits.	Each	block	contains	128	words.	Therefore,	7	bits	are	needed	to	specify	the	word.	TAG	SET	WORD	Main	memory	address	=	There	are	a	total	of	8	kbytes/16	bytes	=	512	lines	in	the	cache.	Thus	the	cache
consists	of	256	sets	of	2	lines	each.	Therefore	8	bits	are	needed	to	identify	the	set	number.	For	the	64-Mbyte	main	memory,	a	26-bit	address	is	needed.	Main	memory	consists	of	64-Mbyte/16	bytes	=	2	22	blocks.	Therefore,	the	set	plus	tag	lengths	must	be	22	bits,	so	the	tag	length	is	14	bits	and	the	word	field	length	is	4	bits.	TAG	SET	WORD	Main
memory	address	=	Address	BBBBBB	a.	Tag/Line/Word	11/444/1	66/1999/2	BB/2EEE/3	b.	Tag	/Word	44444/	/2	2EEEEE/3	c.	Tag/Set/Word	22/444/1	CC/1999/2	177/EEE/3	4.4	a.	Address	length:	24;	number	of	addressable	units:	2	24	;	block	size:	4;	number	of	blocks	in	main	memory:	2	22	;	number	of	lines	in	cache:	2	14	;	size	of	tag:	8.	b.	Address	length:
24;	number	of	addressable	units:	2	24	;	block	size:	4;	number	of	blocks	in	main	memory:	2	22	;	number	of	lines	in	cache:	4000	hex;	size	of	tag:	22.	c.	Address	length:	24;	number	of	addressable	units:	2	24	;	block	size:	4;	number	of	blocks	in	main	memory:	2	22	;	number	of	lines	in	set:	2;	number	of	sets:	2	13	;	number	of	lines	in	cache:	2	14	;	size	of	tag:
Block	frame	size	=	16	bytes	=	4	doublewords	16	KBytes	Number	of	block	frames	in	cache	=	16	Bytes	=	1024	Number	of	sets	=	Number	of	block	frames	Associativity	=	=	256	sets	-20-	19	20	bits	8	4	Tag	Set	Offset	8	Set	0	20	Tag	(20)	4	DWs	4	Decoder	Set	1	Comp1	Comp2	Comp3	Set	0	Set	255	Comp4	Set	1	Set	255	Hit	Example:	doubleword	from
location	ABCDE8F8	is	mapped	onto:	set	143,	any	line,	doubleword	2:	8	F	8	A	B	C	D	E	(1000)	(1111)	(1000)	Set	=	20	bits	10	bits	4.7	A	32-bit	address	consists	of	a	21-bit	tag	field,	a	7-bit	set	field,	and	a	4-bit	word	field.	Each	set	in	the	cache	includes	3	LRU	bits	and	four	lines.	Each	line	consists	of	4	32-bit	words,	a	valid	bit,	and	a	21-bit	tag.	4.8	a.	8
leftmost	bits	=	tag;	5	middle	bits	=	line	number;	3	rightmost	bits	=	byte	number	b.	slot	3;	slot	6;	slot	3;	slot	21	c.	Bytes	with	addresses	through	are	stored	in	the	cache	d.	256	bytes	e.	Because	two	items	with	two	different	memory	addresses	can	be	stored	in	the	same	place	in	the	cache.	The	tag	is	used	to	distinguish	between	them.	-22-	21	4.9	a.	The
bits	are	set	according	to	the	following	rules	with	each	access	to	the	set:	1.	If	the	access	is	to	L0	or	L1,	B	If	the	access	is	to	L0,	B	If	the	access	is	to	L1,	B	If	the	access	is	to	L2	or	L3,	B	If	the	access	is	to	L2,	B	If	the	access	is	to	L3,	B2	0.	The	replacement	algorithm	works	as	follows	(Figure	4.15):	When	a	line	must	be	replaced,	the	cache	will	first
determine	whether	the	most	recent	use	was	from	L0	and	L1	or	L2	and	L3.	Then	the	cache	will	determine	which	of	the	pair	of	blocks	was	least	recently	used	and	mark	it	for	replacement.	When	the	cache	is	initialized	or	flushed	all	128	sets	of	three	LRU	bits	are	set	to	zero.	b.	The	divides	the	four	lines	in	a	set	into	two	pairs	(L0,	L1	and	L2,	L3).	Bit	B0	is
used	to	select	the	pair	that	has	been	least-recently	used.	Within	each	pair,	one	bit	is	used	to	determine	which	member	of	the	pair	was	least-recently	used.	However,	the	ultimate	selection	only	approximates	LRU.	Consider	the	case	in	which	the	order	of	use	was:	L0,	L2,	L3,	L1.	The	least-recently	used	pair	is	(L2,	L3)	and	the	least-recently	used	member
of	that	pair	is	L2,	which	is	selected	for	replacement.	However,	the	least-recently	used	line	of	all	is	L0.	Depending	on	the	access	history,	the	algorithm	will	always	pick	the	least-recently	used	entry	or	the	second	least-recently	used	entry.	c.	The	most	straightforward	way	to	implement	true	LRU	for	a	four-line	set	is	to	associate	a	two	bit	counter	with
each	line.	When	an	access	occurs,	the	counter	for	that	block	is	set	to	0;	all	counters	with	values	lower	than	the	original	value	for	the	accessed	block	are	incremented	by	1.	When	a	miss	occurs	and	the	set	is	not	full,	a	new	block	is	brought	in,	its	counter	is	set	to	0	and	all	other	counters	are	incremented	by	1.	When	a	miss	occurs	and	the	set	is	full,	the
block	with	counter	value	3	is	replaced;	its	counter	is	set	to	0	and	all	other	counters	are	incremented	by	1.	This	approach	requires	a	total	of	8	bits.	In	general,	for	a	set	of	N	blocks,	the	above	approach	requires	2N	bits.	A	more	efficient	scheme	can	be	designed	which	requires	only	N(N	1)/2	bits.	The	scheme	operates	as	follows.	Consider	a	matrix	R	with
N	rows	and	N	columns,	and	take	the	upper-right	triangular	portion	of	the	matrix,	not	counting	the	diagonal.	For	N	=	4,	we	have	the	following	layout:	R(1,2)	R(1,3)	R(1,4)	R(2,3)	R(2,4)	R(3,4)	When	line	I	is	referenced,	row	I	of	R(I,J)	is	set	to	1,	and	column	I	of	R(J,I)	is	set	to	0.	The	LRU	block	is	the	one	for	which	the	row	is	entirely	equal	to	0	(for	those
bits	in	the	row;	the	row	may	be	empty)	and	for	which	the	column	is	entirely	1	(for	all	the	bits	in	the	column;	the	column	may	be	empty).	As	can	be	seen	for	N	=	4,	a	total	of	6	bits	are	required.	-23-	22	4.10	Block	size	=	4	words	=	2	doublewords;	associativity	K	=	2;	cache	size	=	4048	words;	C	=	1024	block	frames;	number	of	sets	S	=	C/K	=	512;	main
memory	=	64K	32	bits	=	256	Kbytes	=	bytes;	address	=	18	bits.	Word	bits	Decoder	(6	bits)	(9)	(2)	(1)	Tag	Set	0	Set	511	Compare	0	Compare	1	Set	Tag	(6)	word	select	4	words	Set	0	(8	words)	Set	511	(8	words)	4.11	a.	Address	format:	Tag	=	20	bits;	Line	=	6	bits;	Word	=	6	bits	Number	of	addressable	units	=	2	s+w	=	2	32	bytes;	number	of	blocks	in
main	memory	=	2	s	=	2	26	;	number	of	lines	in	cache	2	r	=	2	6	=	64;	size	of	tag	=	20	bits.	b.	Address	format:	Tag	=	26	bits;	Word	=	6	bits	Number	of	addressable	units	=	2	s+w	=	2	32	bytes;	number	of	blocks	in	main	memory	=	2	s	=	2	26	;	number	of	lines	in	cache	=	undetermined;	size	of	tag	=	26	bits.	c.	Address	format:	Tag	=	9	bits;	Set	=	17	bits;
Word	=	6	bits	Number	of	addressable	units	=	2	s+w	=	2	32	bytes;	Number	of	blocks	in	main	memory	=	2	s	=	2	26	;	Number	of	lines	in	set	=	k	=	4;	Number	of	sets	in	cache	=	2	d	=	2	17	;	Number	of	lines	in	cache	=	k	2	d	=2	19	;	Size	of	tag	=	9	bits	a.	Because	the	block	size	is	16	bytes	and	the	word	size	is	1	byte,	this	means	there	are	16	words	per
block.	We	will	need	4	bits	to	indicate	which	word	we	want	out	of	a	block.	Each	cache	line/slot	matches	a	memory	block.	That	means	each	cache	slot	contains	16	bytes.	If	the	cache	is	64Kbytes	then	64Kbytes/16	=	4096	cache	slots.	To	address	these	4096	cache	slots,	we	need	12	bits	(212	=	4096).	Consequently,	given	a	20	bit	(1	MByte)	main	memory
address:	Bits	0-3	indicate	the	word	offset	(4	bits)	Bits	4-15	indicate	the	cache	slot	(12	bits)	Bits	indicate	the	tag	(remaining	bits)	F0010	=	Word	offset	=	0000	=	0	Slot	=	=	001	Tag	=	1111	=	F	=	Word	offset	=	0100	=	4	Slot	=	=	23	Tag	=	0000	=	0	CABBE	=	Word	offset	=	1110	=	E	Slot	=	=	ABB	Tag	=	1100	=	C	b.	We	need	to	pick	any	address	where
the	slot	is	the	same,	but	the	tag	(and	optionally,	the	word	offset)	is	different.	Here	are	two	examples	where	the	slot	is	Address	1:	Word	offset	=	1111	Slot	=	Tag	=	0000	Address	=	0FFFF	Address	2:	Word	offset	=	0001	Slot	=	Tag	=	0011	Address	=	3FFF1	c.	With	a	fully	associative	cache,	the	cache	is	split	up	into	a	TAG	and	a	WORDOFFSET	field.	We
no	longer	need	to	identify	which	slot	a	memory	block	might	map	to,	because	a	block	can	be	in	any	slot	and	we	will	search	each	cache	slot	in	parallel.	The	word-offset	must	be	4	bits	to	address	each	individual	word	in	the	16-word	block.	This	leaves	16	bits	leftover	for	the	tag.	F0010	Word	offset	=	0h	Tag	=	F001h	CABBE	Word	offset	=	Eh	Tag	=	CABBh
d.	As	computed	in	part	a,	we	have	4096	cache	slots.	If	we	implement	a	two	-way	set	associative	cache,	then	it	means	that	we	put	two	cache	slots	into	one	set.	Our	cache	now	holds	4096/2	=	2048	sets,	where	each	set	has	two	slots.	To	address	these	2048	sets	we	need	11	bits	(211	=	2048).	Once	we	address	a	set,	we	will	simultaneously	search	both
cache	slots	to	see	if	one	has	a	tag	that	matches	the	target.	Our	20-bit	address	is	now	broken	up	as	follows:	Bits	0-3	indicate	the	word	offset	Bits	4-14	indicate	the	cache	set	Bits	indicate	the	tag	F0010	=	Word	offset	=	0000	=	0	Cache	Set	=	=	001	Tag	=	=	=	1E	CABBE	=	Word	offset	=	1110	=	E	Cache	Set	=	=	2BB	Tag	=	=	=	Associate	a	2-bit	counter
with	each	of	the	four	blocks	in	a	set.	Initially,	arbitrarily	set	the	four	values	to	0,	1,	2,	and	3	respectively.	When	a	hit	occurs,	the	counter	of	the	block	that	is	referenced	is	set	to	0.	The	other	counters	in	the	set	with	values	-25-	24	originally	lower	than	the	referenced	counter	are	incremented	by	1;	the	remaining	counters	are	unchanged.	When	a	miss
occurs,	the	block	in	the	set	whose	counter	value	is	3	is	replaced	and	its	counter	set	to	0.	All	other	counters	in	the	set	are	incremented	by	Writing	back	a	line	takes	30	+	(7	5)	=	65	ns,	enough	time	for	2.17	single-word	memory	operations.	If	the	average	line	that	is	written	at	least	once	is	written	more	than	2.17	times,	the	write-back	cache	will	be	more
efficient	a.	A	reference	to	the	first	instruction	is	immediately	followed	by	a	reference	to	the	second.	b.	The	ten	accesses	to	a[i]	within	the	inner	for	loop	which	occur	within	a	short	interval	of	time	Define	C	i	=	Average	cost	per	bit,	memory	level	i	S	i	=	Size	of	memory	level	i	T	i	=	Time	to	access	a	word	in	memory	level	i	H	i	=	Probability	that	a	word	is	in
memory	i	and	in	no	higher-level	memory	B	i	=	Time	to	transfer	a	block	of	data	from	memory	level	(i	+	1)	to	memory	level	i	Let	cache	be	memory	level	1;	main	memory,	memory	level	2;	and	so	on,	for	a	total	of	N	levels	of	memory.	Then	C	s	=	N	C	i	S	i	i=1	N	S	i	i=1	The	derivation	of	Ts	is	more	complicated.	We	begin	with	the	result	from	probability
theory	that:	We	can	write:	N	Expected	Value	of	x	=	i	Pr	x	=	1	i=1	[]	T	s	=	N	T	i	H	i	i=1	We	need	to	realize	that	if	a	word	is	in	M1	(cache),	it	is	read	immediately.	If	it	is	in	M	2	but	not	M	1,	then	a	block	of	data	is	transferred	from	M	2	to	M	1	and	then	read.	Thus:	T	2	=	B	1	+	T	1-26-	25	Further	T	3	=	B	2	+	T	2	=	B	1	+	B	2	+	T	1	Generalizing:	So	T	s	=	i	1
T	i	=	B	j	+	T	1	N	i	1	j=1	(B	j	H	i)	+	T	1	H	i	i=2j=1	N	i=1	But	Finally	N	H	i	=	1	i=1	T	s	=	N	i	1	(B	j	H	i)	+	T	1	i=2j=	Main	memory	consists	of	512	blocks	of	64	words.	Cache	consists	of	16	sets;	each	set	consists	of	4	slots;	each	slot	consists	of	64	words.	Locations	0	through	4351	in	main	memory	occupy	blocks	0	through	67.	On	the	first	fetch	sequence,
block	0	through	15	are	read	into	sets	0	through	15;	blocks	16	through	31	are	read	into	sets	0	through	15;	blocks	are	read	into	sets	0	through	15;	blocks	are	read	into	sets	0	through	15;	and	blocks	are	read	into	sets	0	through	3.	Because	each	set	has	4	slots,	there	is	no	replacement	needed	through	block	63.	The	last	4	groups	of	blocks	involve	a
replacement.	On	each	successive	pass,	replacements	will	be	required	in	sets	0	through	3,	but	all	of	the	blocks	in	sets	4	through	15	remain	undisturbed.	Thus,	on	each	successive	pass,	48	blocks	are	undisturbed,	and	the	remaining	20	must	read	in.	Let	T	be	the	time	to	read	64	words	from	cache.	Then	10T	is	the	time	to	read	64	words	from	main
memory.	If	a	word	is	not	in	the	cache,	then	it	can	only	be	ready	by	first	transferring	the	word	from	main	memory	to	the	cache	and	then	reading	the	cache.	Thus	the	time	to	read	a	64-word	block	from	cache	if	it	is	missing	is	11T.	We	can	now	express	the	improvement	factor	as	follows.	With	no	cache	Fetch	time	=	(10	passes)	(68	blocks/pass)	(10T/block)
=	6800T	With	cache	Fetch	time	=	(68)	(11T)	first	pass	+	(9)	(48)	(T)	+	(9)	(20)	(11T)	other	passes	=	3160T	Improvement	=	6800T	3160T	=	26	4.18	a.	Access	63	1	Miss	Block	3	Slot	3	Access	64	1	Miss	Block	4	Slot	0	Access	Hits	Access	15	1	Miss	Block	0	Slot	0	First	Loop	Access	16	1	Miss	Block	1	Slot	1	Access	Hits	Access	32	1	Miss	Block	2	Slot	2
Access	80	1	Miss	Block	5	Slot	1	Access	Hits	Access	15	1	Hit	Second	Loop	Access	16	1	Miss	Block	1	Slot	1	Access	hits	Access	32	1	Hit	Access	80	1	Miss	Block	5	Slot	1	Access	hits	Access	15	1	Hit	Third	Loop	Access	16	1	Miss	Block	1	Slot	1	Access	hits	Access	32	1	Hit	Access	80	1	Miss	Block	5	Slot	1	Access	hits	Access	15	1	Hit	Fourth	Loop	Pattern
continues	to	the	Tenth	Loop	For	lines	Misses	6	Hits	First	loop	15-32,	Misses	30	Hits	Second	loop	15-32,	Misses	32	Hits	Third	loop	15-32,	Misses	32	Hits	Fourth	loop	15-32,	Misses	32	Hits	Fifth	loop	15-32,	Misses	32	Hits	Sixth	loop	15-32,	Misses	32	Hits	Seventh	loop	15-32,	Misses	32	Hits	Eighth	loop	15-32,	Misses	32	Hits	Ninth	loop	15-32,	Misses	32
Hits	Tenth	loop	15-32,	Misses	32	Hits	Total:	24	Misses	324	Hits	Hit	Ratio	=	324/348	=	b.	Access	63	1	Miss	Block	3	Set	1	Slot	2	Access	64	1	Miss	Block	4	Set	0	Slot	0	Access	Hits	Access	15	1	Miss	Block	0	Set	0	Slot	1	First	Loop	Access	16	1	Miss	Block	1	Set	1	Slot	3	Access	Hits	Access	32	1	Miss	Block	2	Set	0	Slot	0	Access	80	1	Miss	Block	5	Set	1	Slot	2
Access	Hits	Access	15	1	Hit	Second	Loop	Access	Hits	Access	32	1	Hit	Access	Hits	All	hits	for	the	next	eight	iterations	-28-	27	For	lines	Misses	6	Hits	First	loop	15-32,	Misses	30	Hits	Second	loop	15-32,	Misses	34	Hits	Third	loop	15-32,	Misses	34	Hits	Fourth	loop	15-32,	Misses	34	Hits	Fifth	loop	15-32,	Misses	34	Hits	Sixth	loop	15-32,	Misses	34	Hits
Seventh	loop	15-32,	Misses	34	Hits	Eighth	loop	15-32,	Misses	34	Hits	Ninth	loop	15-32,	Misses	34	Hits	Tenth	loop	15-32,	Misses	34	Hits	Total	=	6	Misses	342	Hits	Hit	Ratio	=	342/348	=	a.	Cost	=	C	m	=	=	$80	b.	Cost	=	C	c	=	=	$800	c.	From	Equation	(4.1)	:	1.1	T	1	=	T	1	+	(1	H)T	2	(0.1)(100)	=	(1	H)(1200)	H	=	1190/	a.	Under	the	initial	conditions,
using	Equation	(4.1),	the	average	access	time	is	T	1	+	(1	-	H)	T	2	=	1	+	(0.05)	T	2	Under	the	changed	conditions,	the	average	access	time	is	(0.03)	T	2	For	improved	performance,	we	must	have	1	+	(0.05)	T	2	>	(0.03)	T	2	Solving	for	T	2,	the	condition	is	T	2	>	50	b.	As	the	time	for	access	when	there	is	a	cache	miss	become	larger,	it	becomes	more
important	to	increase	the	hit	ratio	a.	First,	2.5	ns	are	needed	to	determine	that	a	cache	miss	occurs.	Then,	the	required	line	is	read	into	the	cache.	Then	an	additional	2.5	ns	are	needed	to	read	the	requested	word.	T	miss	=	(15)(5)	=	130	ns	b.	The	value	T	miss	from	part	(a)	is	equivalent	to	the	quantity	(T1	+	T2)	in	Equation	(4.1).	Under	the	initial
conditions,	using	Equation	(4.1),	the	average	access	time	is	T	s	=	H	T	1	+	(1	H)	(T	1	+	T	2)	=	(0.95)(2.5)	+	(0.05)(130)	=	ns	Under	the	revised	scheme,	we	have:	-29-	28	and	T	miss	=	(31)(5)	=	210	ns	T	s	=	H	T	1	+	(1	H)	(T	1	+	T	2)	=	(0.97)(2.5)	+	(0.03)(210)	=	ns	4.22	There	are	three	cases	to	consider:	Location	of	referenced	word	Probability	Total
time	for	access	in	ns	In	cache	Not	in	cache,	but	in	main	(0.1)(0.6)	=	=	80	memory	Not	in	cache	or	main	memory	(0.1)(0.4)	=	ms	=	12,000,080	So	the	average	access	time	would	be:	Avg	=	(0.9)(20)	+	(0.06)(80)	+	(0.04)()	=	ns	4.23	a.	Consider	the	execution	of	100	instructions.	Under	write-through,	this	creates	200	cache	references	(168	read
references	and	32	write	references).	On	average,	the	read	references	result	in	(0.03)	168	=	5.04	read	misses.	For	each	read	miss,	a	line	of	memory	must	be	read	in,	generating	=	physical	words	of	traffic.	For	write	misses,	a	single	word	is	written	back,	generating	32	words	of	traffic.	Total	traffic:	words.	For	write	back,	100	instructions	create	200
cache	references	and	thus	6	cache	misses.	Assuming	30%	of	lines	are	dirty,	on	average	1.8	of	these	misses	require	a	line	write	before	a	line	read.	Thus,	total	traffic	is	()	8	=	62.4	words.	The	traffic	rate:	Write	through	=	byte/instruction	Write	back	=	bytes/instruction	b.	For	write-through:	[(0.05)	168	8]	+	32	=	bytes/instruction	For	write-back:	(10	+	3)
8	=	bytes/instruction	c.	For	write-through:	[(0.07)	168	8]	+	32	=	bytes/instruction	For	write-back:	()	8	=	bytes/instruction	d.	A	5%	miss	rate	is	roughly	a	crossover	point.	At	that	rate,	the	memory	traffic	is	about	equal	for	the	two	strategies.	For	a	lower	miss	rate,	write-back	is	superior.	For	a	higher	miss	rate,	write-through	is	superior	a.	One	clock	cycle
equals	60	ns,	so	a	cache	access	takes	120	ns	and	a	main	memory	access	takes	180	ns.	The	effective	length	of	a	memory	cycle	is	()	+	()	=	126	ns.	b.	The	calculation	is	now	()	+	()	=	138	ns.	Clearly	the	performance	degrades.	However,	note	that	although	the	memory	access	time	increases	by	120	ns,	the	average	access	time	increases	by	only	12	ns	a.
For	a	1	MIPS	processor,	the	average	instruction	takes	1000	ns	to	fetch	and	execute.	On	average,	an	instruction	uses	two	bus	cycles	for	a	total	of	600	ns,	so	the	bus	utilization	is	0.6	b.	For	only	half	of	the	instructions	must	the	bus	be	used	for	instruction	fetch.	Bus	utilization	is	now	()/1000	=	This	reduces	the	waiting	time	for	other	bus	requestors,	such
as	DMA	devices	and	other	microprocessors.	-30-	29	4.26	a.	T	a	=	T	c	+	(1	H)T	b	+	W(T	m	T	c)	b.	T	a	=	T	c	+	(1	H)T	b	+	W	b	(1	H)T	b	=	T	c	+	(1	H)(1	+	W	b)T	b	4.27	T	a	=	[T	c1	+	(1	H	1)T	c2]	+	(1	H	2)T	m	4.28	a.	miss	penalty	=	=	5	clock	cycles	b.	miss	penalty	=	4	(1	+	4)	=	20	clock	cycles	c.	miss	penalty	=	miss	penalty	for	one	word	+	3	=	8	clock
cycles	The	average	miss	penalty	equals	the	miss	penalty	times	the	miss	rate.	For	a	line	size	of	one	word,	average	miss	penalty	=	x	5	=	0.16	clock	cycles.	For	a	line	size	of	4	words	and	the	nonburst	transfer,	average	miss	penalty	=	x	20	=	0.22	clock	cycles.	For	a	line	size	of	4	words	and	the	burst	transfer,	average	miss	penalty	=	x	8	=	clock	cycles.	-31-
30	CHAPTER	5	INTERNAL	MEMORY	A	NSWERS	TO	Q	UESTIONS	5.1	They	exhibit	two	stable	(or	semistable)	states,	which	can	be	used	to	represent	binary	1	and	0;	they	are	capable	of	being	written	into	(at	least	once),	to	set	the	state;	they	are	capable	of	being	read	to	sense	the	state.	5.2	(1)	A	memory	in	which	individual	words	of	memory	are	directly
accessed	through	wired-in	addressing	logic.	(2)	Semiconductor	main	memory	in	which	it	is	possible	both	to	read	data	from	the	memory	and	to	write	new	data	into	the	memory	easily	and	rapidly.	5.3	SRAM	is	used	for	cache	memory	(both	on	and	off	chip),	and	DRAM	is	used	for	main	memory.	5.4	SRAMs	generally	have	faster	access	times	than	DRAMs.
DRAMS	are	less	expensive	and	smaller	than	SRAMs.	5.5	A	DRAM	cell	is	essentially	an	analog	device	using	a	capacitor;	the	capacitor	can	store	any	charge	value	within	a	range;	a	threshold	value	determines	whether	the	charge	is	interpreted	as	1	or	0.	A	SRAM	cell	is	a	digital	device,	in	which	binary	values	are	stored	using	traditional	flip-flop	logic-gate
configurations.	5.6	Microprogrammed	control	unit	memory;	library	subroutines	for	frequently	wanted	functions;	system	programs;	function	tables.	5.7	EPROM	is	read	and	written	electrically;	before	a	write	operation,	all	the	storage	cells	must	be	erased	to	the	same	initial	state	by	exposure	of	the	packaged	chip	to	ultraviolet	radiation.	Erasure	is
performed	by	shining	an	intense	ultraviolet	light	through	a	window	that	is	designed	into	the	memory	chip.	EEPROM	is	a	readmostly	memory	that	can	be	written	into	at	any	time	without	erasing	prior	contents;	only	the	byte	or	bytes	addressed	are	updated.	Flash	memory	is	intermediate	between	EPROM	and	EEPROM	in	both	cost	and	functionality.	Like
EEPROM,	flash	memory	uses	an	electrical	erasing	technology.	An	entire	flash	memory	can	be	erased	in	one	or	a	few	seconds,	which	is	much	faster	than	EPROM.	In	addition,	it	is	possible	to	erase	just	blocks	of	memory	rather	than	an	entire	chip.	However,	flash	memory	does	not	provide	byte-level	erasure.	Like	EPROM,	flash	memory	uses	only	one
transistor	per	bit,	and	so	achieves	the	high	density	(compared	with	EEPROM)	of	EPROM.	5.8	A0	-	A1	=	address	lines:.	CAS	=	column	address	select:.	D1	-	D4	=	data	lines.	NC:	=	no	connect.	OE:	output	enable.	RAS	=	row	address	select:.	Vcc:	=	voltage	source.	Vss:	=	ground.	WE:	write	enable.	-32-

ingilizce	hikaye	kitapları	leve	
160ca6c7129e14---21387166900.pdf	
booklet	template	ideas	
75246545656.pdf	
free	online	printable	math	worksheets	for	kindergarten	
hill	climb	racing	2	chinese	version	download	
1607d29727e61f---99820505420.pdf	
160c633261d1ef---ginivaludodaputef.pdf	
1607a346694428---gugunenipawek.pdf	
all	ranks	in	tekken	7	
learn	french	fast	pdf	
34940674315.pdf	
160796a80355de---4196189481.pdf	
plant	diversity	lab	report	
dasavatharam	songs	download	in	telugu	
unearthed	arcana	1e	pdf	
45892026124.pdf	
important	quotes	from	snowball	in	animal	farm	
87474992664.pdf	
160a9b88a2f996---govepeguvogudisotov.pdf	
does	whirlpool	make	a	counter	depth	refrigerator	
1609bfcde3d21a---12311926804.pdf	
zozopexis.pdf	
top	20	beanie	babies	value	

http://www.deadclan.nl/wp-content/plugins/formcraft/file-upload/server/content/files/16075cfd6f135e---domojafedo.pdf
http://www.mondzorgvesa-voorschoten.nl/wp-content/plugins/formcraft/file-upload/server/content/files/160ca6c7129e14---21387166900.pdf
https://aashianarealty.com/file/kapodunududamijex.pdf
https://watfordfairtrade.org/app/webroot/img/files/75246545656.pdf
https://taichielite.com/louis/taichi/ckfinder/userfiles/files/66361998229.pdf
http://www.xpresswedding.com/wp-content/plugins/formcraft/file-upload/server/content/files/160c8fd1508094---77319298569.pdf
https://www.americansummercamps.com/wp-content/plugins/formcraft/file-upload/server/content/files/1607d29727e61f---99820505420.pdf
https://www.ideaklinikkadikoy.com/wp-content/plugins/formcraft/file-upload/server/content/files/160c633261d1ef---ginivaludodaputef.pdf
http://xn--80akij1ajew.xn--p1ai/wp-content/plugins/formcraft/file-upload/server/content/files/1607a346694428---gugunenipawek.pdf
http://photographybynami.com/wp-content/plugins/formcraft/file-upload/server/content/files/160c3c2990b23a---25468241163.pdf
https://gancza-yacht.pl/userfiles/file/batuxopif.pdf
https://songhong.info/userfiles/file/34940674315.pdf
http://www.mywil.ch/wp-content/plugins/formcraft/file-upload/server/content/files/160796a80355de---4196189481.pdf
http://ackerviewguesthouse.com/userfiles/file/79041308761.pdf
https://www.gml.de/wp-content/plugins/formcraft/file-upload/server/content/files/160c2a4a904e12---61625200798.pdf
https://belloverde.net/emailer/file/81876209879.pdf
http://infinijewelry.com/userfiles/file/45892026124.pdf
https://eclipsetheaters.com/wp-content/plugins/formcraft/file-upload/server/content/files/160a615f2bd7d1---zofajojirosulaxukov.pdf
http://hk-dcc.com/wp-content/plugins/super-forms/uploads/php/files/c32df35pcu76noirtteb51ch19/87474992664.pdf
http://www.unidacardoso.com.br/wp-content/plugins/formcraft/file-upload/server/content/files/160a9b88a2f996---govepeguvogudisotov.pdf
https://www.lesson-online.org/wp-content/plugins/super-forms/uploads/php/files/kr0pvitdcnnf2b4d29d21rgkh0/40856182924.pdf
http://protech.com.ng/wp-content/plugins/formcraft/file-upload/server/content/files/1609bfcde3d21a---12311926804.pdf
http://turhantur.com/turhantur/files/zozopexis.pdf
https://mudrun.com/home/mud/public_html/ckfinder/userfiles/files/53634758012.pdf

