
	

Continue

https://feedproxy.google.com/~r/skout/mBVl/~3/GLLx1DTH0VQ/uplcv?utm_term=join+query+in+sql


Join	query	in	sql

MySQL	supports	the	following	JOIN	syntax	for	the	table_references	part	of	SELECT	statements	and	multiple-table	DELETE	and	UPDATE	statements:	table_references:	escaped_table_reference	[,	escaped_table_reference]	...	escaped_table_reference:	{	table_reference	|	{	OJ	table_reference	}	}	table_reference:	{	table_factor	|	joined_table	}
table_factor:	{	tbl_name	[PARTITION	(partition_names)]	[[AS]	alias]	[index_hint_list]	|	[LATERAL]	table_subquery	[AS]	alias	[(col_list)]	|	(	table_references	)	}	joined_table:	{	table_reference	{[INNER	|	CROSS]	JOIN	|	STRAIGHT_JOIN}	table_factor	[join_specification]	|	table_reference	{LEFT|RIGHT}	[OUTER]	JOIN	table_reference	join_specification	|
table_reference	NATURAL	[INNER	|	{LEFT|RIGHT}	[OUTER]]	JOIN	table_factor	}	join_specification:	{	ON	search_condition	|	USING	(join_column_list)	}	join_column_list:	column_name	[,	column_name]	...	index_hint_list:	index_hint	[,	index_hint]	...	index_hint:	{	USE	{INDEX|KEY}	[FOR	{JOIN|ORDER	BY|GROUP	BY}]	([index_list])	|
{IGNORE|FORCE}	{INDEX|KEY}	[FOR	{JOIN|ORDER	BY|GROUP	BY}]	(index_list)	}	index_list:	index_name	[,	index_name]	...	A	table	reference	is	also	known	as	a	join	expression.	A	table	reference	(when	it	refers	to	a	partitioned	table)	may	contain	a	PARTITION	clause,	including	a	list	of	comma-separated	partitions,	subpartitions,	or	both.	This	option
follows	the	name	of	the	table	and	precedes	any	alias	declaration.	The	effect	of	this	option	is	that	rows	are	selected	only	from	the	listed	partitions	or	subpartitions.	Any	partitions	or	subpartitions	not	named	in	the	list	are	ignored.	For	more	information	and	examples,	see	Section	24.5,	“Partition	Selection”.	The	syntax	of	table_factor	is	extended	in
MySQL	in	comparison	with	standard	SQL.	The	standard	accepts	only	table_reference,	not	a	list	of	them	inside	a	pair	of	parentheses.	This	is	a	conservative	extension	if	each	comma	in	a	list	of	table_reference	items	is	considered	as	equivalent	to	an	inner	join.	For	example:	SELECT	*	FROM	t1	LEFT	JOIN	(t2,	t3,	t4)	ON	(t2.a	=	t1.a	AND	t3.b	=	t1.b	AND
t4.c	=	t1.c)	is	equivalent	to:	SELECT	*	FROM	t1	LEFT	JOIN	(t2	CROSS	JOIN	t3	CROSS	JOIN	t4)	ON	(t2.a	=	t1.a	AND	t3.b	=	t1.b	AND	t4.c	=	t1.c)	In	MySQL,	JOIN,	CROSS	JOIN,	and	INNER	JOIN	are	syntactic	equivalents	(they	can	replace	each	other).	In	standard	SQL,	they	are	not	equivalent.	INNER	JOIN	is	used	with	an	ON	clause,	CROSS	JOIN	is
used	otherwise.	In	general,	parentheses	can	be	ignored	in	join	expressions	containing	only	inner	join	operations.	MySQL	also	supports	nested	joins.	See	Section	8.2.1.8,	“Nested	Join	Optimization”.	Index	hints	can	be	specified	to	affect	how	the	MySQL	optimizer	makes	use	of	indexes.	For	more	information,	see	Section	8.9.4,	“Index	Hints”.	Optimizer
hints	and	the	optimizer_switch	system	variable	are	other	ways	to	influence	optimizer	use	of	indexes.	See	Section	8.9.3,	“Optimizer	Hints”,	and	Section	8.9.2,	“Switchable	Optimizations”.	The	following	list	describes	general	factors	to	take	into	account	when	writing	joins:	A	table	reference	can	be	aliased	using	tbl_name	AS	alias_name	or	tbl_name
alias_name:	SELECT	t1.name,	t2.salary	FROM	employee	AS	t1	INNER	JOIN	info	AS	t2	ON	t1.name	=	t2.name;	SELECT	t1.name,	t2.salary	FROM	employee	t1	INNER	JOIN	info	t2	ON	t1.name	=	t2.name;	A	table_subquery	is	also	known	as	a	derived	table	or	subquery	in	the	FROM	clause.	See	Section	13.2.11.8,	“Derived	Tables”.	Such	subqueries	must
include	an	alias	to	give	the	subquery	result	a	table	name,	and	may	optionally	include	a	list	of	table	column	names	in	parentheses.	A	trivial	example	follows:	SELECT	*	FROM	(SELECT	1,	2,	3)	AS	t1;	The	maximum	number	of	tables	that	can	be	referenced	in	a	single	join	is	61.	This	includes	a	join	handled	by	merging	derived	tables	and	views	in	the
FROM	clause	into	the	outer	query	block	(see	Section	8.2.2.4,	“Optimizing	Derived	Tables,	View	References,	and	Common	Table	Expressions	with	Merging	or	Materialization”).	INNER	JOIN	and	,	(comma)	are	semantically	equivalent	in	the	absence	of	a	join	condition:	both	produce	a	Cartesian	product	between	the	specified	tables	(that	is,	each	and
every	row	in	the	first	table	is	joined	to	each	and	every	row	in	the	second	table).	However,	the	precedence	of	the	comma	operator	is	less	than	that	of	INNER	JOIN,	CROSS	JOIN,	LEFT	JOIN,	and	so	on.	If	you	mix	comma	joins	with	the	other	join	types	when	there	is	a	join	condition,	an	error	of	the	form	Unknown	column	'col_name'	in	'on	clause'	may
occur.	Information	about	dealing	with	this	problem	is	given	later	in	this	section.	The	search_condition	used	with	ON	is	any	conditional	expression	of	the	form	that	can	be	used	in	a	WHERE	clause.	Generally,	the	ON	clause	serves	for	conditions	that	specify	how	to	join	tables,	and	the	WHERE	clause	restricts	which	rows	to	include	in	the	result	set.	If
there	is	no	matching	row	for	the	right	table	in	the	ON	or	USING	part	in	a	LEFT	JOIN,	a	row	with	all	columns	set	to	NULL	is	used	for	the	right	table.	You	can	use	this	fact	to	find	rows	in	a	table	that	have	no	counterpart	in	another	table:	SELECT	left_tbl.*	FROM	left_tbl	LEFT	JOIN	right_tbl	ON	left_tbl.id	=	right_tbl.id	WHERE	right_tbl.id	IS	NULL;	This
example	finds	all	rows	in	left_tbl	with	an	id	value	that	is	not	present	in	right_tbl	(that	is,	all	rows	in	left_tbl	with	no	corresponding	row	in	right_tbl).	See	Section	8.2.1.9,	“Outer	Join	Optimization”.	The	USING(join_column_list)	clause	names	a	list	of	columns	that	must	exist	in	both	tables.	If	tables	a	and	b	both	contain	columns	c1,	c2,	and	c3,	the
following	join	compares	corresponding	columns	from	the	two	tables:	a	LEFT	JOIN	b	USING	(c1,	c2,	c3)	The	NATURAL	[LEFT]	JOIN	of	two	tables	is	defined	to	be	semantically	equivalent	to	an	INNER	JOIN	or	a	LEFT	JOIN	with	a	USING	clause	that	names	all	columns	that	exist	in	both	tables.	RIGHT	JOIN	works	analogously	to	LEFT	JOIN.	To	keep	code
portable	across	databases,	it	is	recommended	that	you	use	LEFT	JOIN	instead	of	RIGHT	JOIN.	The	{	OJ	...	}	syntax	shown	in	the	join	syntax	description	exists	only	for	compatibility	with	ODBC.	The	curly	braces	in	the	syntax	should	be	written	literally;	they	are	not	metasyntax	as	used	elsewhere	in	syntax	descriptions.	SELECT	left_tbl.*	FROM	{	OJ
left_tbl	LEFT	OUTER	JOIN	right_tbl	ON	left_tbl.id	=	right_tbl.id	}	WHERE	right_tbl.id	IS	NULL;	You	can	use	other	types	of	joins	within	{	OJ	...	},	such	as	INNER	JOIN	or	RIGHT	OUTER	JOIN.	This	helps	with	compatibility	with	some	third-party	applications,	but	is	not	official	ODBC	syntax.	STRAIGHT_JOIN	is	similar	to	JOIN,	except	that	the	left	table	is
always	read	before	the	right	table.	This	can	be	used	for	those	(few)	cases	for	which	the	join	optimizer	processes	the	tables	in	a	suboptimal	order.	Some	join	examples:	SELECT	*	FROM	table1,	table2;	SELECT	*	FROM	table1	INNER	JOIN	table2	ON	table1.id	=	table2.id;	SELECT	*	FROM	table1	LEFT	JOIN	table2	ON	table1.id	=	table2.id;	SELECT	*
FROM	table1	LEFT	JOIN	table2	USING	(id);	SELECT	*	FROM	table1	LEFT	JOIN	table2	ON	table1.id	=	table2.id	LEFT	JOIN	table3	ON	table2.id	=	table3.id;	Natural	joins	and	joins	with	USING,	including	outer	join	variants,	are	processed	according	to	the	SQL:2003	standard:	Redundant	columns	of	a	NATURAL	join	do	not	appear.	Consider	this	set	of
statements:	CREATE	TABLE	t1	(i	INT,	j	INT);	CREATE	TABLE	t2	(k	INT,	j	INT);	INSERT	INTO	t1	VALUES(1,	1);	INSERT	INTO	t2	VALUES(1,	1);	SELECT	*	FROM	t1	NATURAL	JOIN	t2;	SELECT	*	FROM	t1	JOIN	t2	USING	(j);	In	the	first	SELECT	statement,	column	j	appears	in	both	tables	and	thus	becomes	a	join	column,	so,	according	to	standard	SQL,
it	should	appear	only	once	in	the	output,	not	twice.	Similarly,	in	the	second	SELECT	statement,	column	j	is	named	in	the	USING	clause	and	should	appear	only	once	in	the	output,	not	twice.	Thus,	the	statements	produce	this	output:	+------+------+------+	|	j	|	i	|	k	|	+------+------+------+	|	1	|	1	|	1	|	+------+------+------+	+------+------+------+	|	j	|	i	|	k	|	+------+------+--
----+	|	1	|	1	|	1	|	+------+------+------+	Redundant	column	elimination	and	column	ordering	occurs	according	to	standard	SQL,	producing	this	display	order:	First,	coalesced	common	columns	of	the	two	joined	tables,	in	the	order	in	which	they	occur	in	the	first	table	Second,	columns	unique	to	the	first	table,	in	order	in	which	they	occur	in	that	table	Third,
columns	unique	to	the	second	table,	in	order	in	which	they	occur	in	that	table	The	single	result	column	that	replaces	two	common	columns	is	defined	using	the	coalesce	operation.	That	is,	for	two	t1.a	and	t2.a	the	resulting	single	join	column	a	is	defined	as	a	=	COALESCE(t1.a,	t2.a),	where:	COALESCE(x,	y)	=	(CASE	WHEN	x	IS	NOT	NULL	THEN	x
ELSE	y	END)	If	the	join	operation	is	any	other	join,	the	result	columns	of	the	join	consist	of	the	concatenation	of	all	columns	of	the	joined	tables.	A	consequence	of	the	definition	of	coalesced	columns	is	that,	for	outer	joins,	the	coalesced	column	contains	the	value	of	the	non-NULL	column	if	one	of	the	two	columns	is	always	NULL.	If	neither	or	both
columns	are	NULL,	both	common	columns	have	the	same	value,	so	it	doesn't	matter	which	one	is	chosen	as	the	value	of	the	coalesced	column.	A	simple	way	to	interpret	this	is	to	consider	that	a	coalesced	column	of	an	outer	join	is	represented	by	the	common	column	of	the	inner	table	of	a	JOIN.	Suppose	that	the	tables	t1(a,	b)	and	t2(a,	c)	have	the
following	contents:	t1	t2	----	----	1	x	2	z	2	y	3	w	Then,	for	this	join,	column	a	contains	the	values	of	t1.a:	mysql>	SELECT	*	FROM	t1	NATURAL	LEFT	JOIN	t2;	+------+------+------+	|	a	|	b	|	c	|	+------+------+------+	|	1	|	x	|	NULL	|	|	2	|	y	|	z	|	+------+------+------+	By	contrast,	for	this	join,	column	a	contains	the	values	of	t2.a.	mysql>	SELECT	*	FROM	t1	NATURAL
RIGHT	JOIN	t2;	+------+------+------+	|	a	|	c	|	b	|	+------+------+------+	|	2	|	z	|	y	|	|	3	|	w	|	NULL	|	+------+------+------+	Compare	those	results	to	the	otherwise	equivalent	queries	with	JOIN	...	ON:	mysql>	SELECT	*	FROM	t1	LEFT	JOIN	t2	ON	(t1.a	=	t2.a);	+------+------+------+------+	|	a	|	b	|	a	|	c	|	+------+------+------+------+	|	1	|	x	|	NULL	|	NULL	|	|	2	|	y	|	2	|	z	|	+-----
-+------+------+------+mysql>	SELECT	*	FROM	t1	RIGHT	JOIN	t2	ON	(t1.a	=	t2.a);	+------+------+------+------+	|	a	|	b	|	a	|	c	|	+------+------+------+------+	|	2	|	y	|	2	|	z	|	|	NULL	|	NULL	|	3	|	w	|	+------+------+------+------+	A	USING	clause	can	be	rewritten	as	an	ON	clause	that	compares	corresponding	columns.	However,	although	USING	and	ON	are	similar,	they	are
not	quite	the	same.	Consider	the	following	two	queries:	a	LEFT	JOIN	b	USING	(c1,	c2,	c3)	a	LEFT	JOIN	b	ON	a.c1	=	b.c1	AND	a.c2	=	b.c2	AND	a.c3	=	b.c3	With	respect	to	determining	which	rows	satisfy	the	join	condition,	both	joins	are	semantically	identical.	With	respect	to	determining	which	columns	to	display	for	SELECT	*	expansion,	the	two
joins	are	not	semantically	identical.	The	USING	join	selects	the	coalesced	value	of	corresponding	columns,	whereas	the	ON	join	selects	all	columns	from	all	tables.	For	the	USING	join,	SELECT	*	selects	these	values:	COALESCE(a.c1,	b.c1),	COALESCE(a.c2,	b.c2),	COALESCE(a.c3,	b.c3)	For	the	ON	join,	SELECT	*	selects	these	values:	a.c1,	a.c2,	a.c3,
b.c1,	b.c2,	b.c3	With	an	inner	join,	COALESCE(a.c1,	b.c1)	is	the	same	as	either	a.c1	or	b.c1	because	both	columns	have	the	same	value.	With	an	outer	join	(such	as	LEFT	JOIN),	one	of	the	two	columns	can	be	NULL.	That	column	is	omitted	from	the	result.	An	ON	clause	can	refer	only	to	its	operands.	Example:	CREATE	TABLE	t1	(i1	INT);	CREATE
TABLE	t2	(i2	INT);	CREATE	TABLE	t3	(i3	INT);	SELECT	*	FROM	t1	JOIN	t2	ON	(i1	=	i3)	JOIN	t3;	The	statement	fails	with	an	Unknown	column	'i3'	in	'on	clause'	error	because	i3	is	a	column	in	t3,	which	is	not	an	operand	of	the	ON	clause.	To	enable	the	join	to	be	processed,	rewrite	the	statement	as	follows:	SELECT	*	FROM	t1	JOIN	t2	JOIN	t3	ON	(i1
=	i3);	JOIN	has	higher	precedence	than	the	comma	operator	(,),	so	the	join	expression	t1,	t2	JOIN	t3	is	interpreted	as	(t1,	(t2	JOIN	t3)),	not	as	((t1,	t2)	JOIN	t3).	This	affects	statements	that	use	an	ON	clause	because	that	clause	can	refer	only	to	columns	in	the	operands	of	the	join,	and	the	precedence	affects	interpretation	of	what	those	operands	are.
Example:	CREATE	TABLE	t1	(i1	INT,	j1	INT);	CREATE	TABLE	t2	(i2	INT,	j2	INT);	CREATE	TABLE	t3	(i3	INT,	j3	INT);	INSERT	INTO	t1	VALUES(1,	1);	INSERT	INTO	t2	VALUES(1,	1);	INSERT	INTO	t3	VALUES(1,	1);	SELECT	*	FROM	t1,	t2	JOIN	t3	ON	(t1.i1	=	t3.i3);	The	JOIN	takes	precedence	over	the	comma	operator,	so	the	operands	for	the	ON
clause	are	t2	and	t3.	Because	t1.i1	is	not	a	column	in	either	of	the	operands,	the	result	is	an	Unknown	column	't1.i1'	in	'on	clause'	error.	To	enable	the	join	to	be	processed,	use	either	of	these	strategies:	Group	the	first	two	tables	explicitly	with	parentheses	so	that	the	operands	for	the	ON	clause	are	(t1,	t2)	and	t3:	SELECT	*	FROM	(t1,	t2)	JOIN	t3	ON
(t1.i1	=	t3.i3);	Avoid	the	use	of	the	comma	operator	and	use	JOIN	instead:	SELECT	*	FROM	t1	JOIN	t2	JOIN	t3	ON	(t1.i1	=	t3.i3);	The	same	precedence	interpretation	also	applies	to	statements	that	mix	the	comma	operator	with	INNER	JOIN,	CROSS	JOIN,	LEFT	JOIN,	and	RIGHT	JOIN,	all	of	which	have	higher	precedence	than	the	comma	operator.	A
MySQL	extension	compared	to	the	SQL:2003	standard	is	that	MySQL	permits	you	to	qualify	the	common	(coalesced)	columns	of	NATURAL	or	USING	joins,	whereas	the	standard	disallows	that.	Page	2	SELECT	...	UNION	[ALL	|	DISTINCT]	SELECT	...	[UNION	[ALL	|	DISTINCT]	SELECT	...]	UNION	combines	the	result	from	multiple	SELECT	statements
into	a	single	result	set.	Example:	mysql>	SELECT	1,	2;	+---+---+	|	1	|	2	|	+---+---+	|	1	|	2	|	+---+---+	mysql>	SELECT	'a',	'b';	+---+---+	|	a	|	b	|	+---+---+	|	a	|	b	|	+---+---+	mysql>	SELECT	1,	2	UNION	SELECT	'a',	'b';	+---+---+	|	1	|	2	|	+---+---+	|	1	|	2	|	|	a	|	b	|	+---+---+	The	column	names	for	a	UNION	result	set	are	taken	from	the	column	names	of	the	first
SELECT	statement.	Selected	columns	listed	in	corresponding	positions	of	each	SELECT	statement	should	have	the	same	data	type.	For	example,	the	first	column	selected	by	the	first	statement	should	have	the	same	type	as	the	first	column	selected	by	the	other	statements.	If	the	data	types	of	corresponding	SELECT	columns	do	not	match,	the	types
and	lengths	of	the	columns	in	the	UNION	result	take	into	account	the	values	retrieved	by	all	the	SELECT	statements.	For	example,	consider	the	following,	where	the	column	length	is	not	constrained	to	the	length	of	the	value	from	the	first	SELECT:	mysql>	SELECT	REPEAT('a',1)	UNION	SELECT	REPEAT('b',20);	+----------------------+	|	REPEAT('a',1)	|	+-
---------------------+	|	a	|	|	bbbbbbbbbbbbbbbbbbbb	|	+----------------------+	TABLE	in	Unions	Beginning	with	MySQL	8.0.19,	you	can	also	use	a	TABLE	statement	or	VALUES	statement	in	a	UNION	wherever	you	can	employ	the	equivalent	SELECT	statement.	Assume	that	tables	t1	and	t2	are	created	and	populated	as	shown	here:	CREATE	TABLE	t1	(x	INT,	y
INT);	INSERT	INTO	t1	VALUES	ROW(4,-2),ROW(5,9);	CREATE	TABLE	t2	(a	INT,	b	INT);	INSERT	INTO	t2	VALUES	ROW(1,2),ROW(3,4);	The	preceding	being	the	case,	and	disregarding	the	column	names	in	the	output	of	the	queries	beginning	with	VALUES,	all	of	the	following	UNION	queries	yield	the	same	result:	SELECT	*	FROM	t1	UNION	SELECT
*	FROM	t2;	TABLE	t1	UNION	SELECT	*	FROM	t2;	VALUES	ROW(4,-2),	ROW(5,9)	UNION	SELECT	*	FROM	t2;	SELECT	*	FROM	t1	UNION	TABLE	t2;	TABLE	t1	UNION	TABLE	t2;	VALUES	ROW(4,-2),	ROW(5,9)	UNION	TABLE	t2;	SELECT	*	FROM	t1	UNION	VALUES	ROW(4,-2),ROW(5,9);	TABLE	t1	UNION	VALUES	ROW(4,-2),ROW(5,9);	VALUES
ROW(4,-2),	ROW(5,9)	UNION	VALUES	ROW(4,-2),ROW(5,9);	To	force	the	column	names	to	be	the	same,	wrap	the	VALUES	on	the	left	hand	side	in	a	SELECT	and	use	aliases,	like	this:	SELECT	*	FROM	(VALUES	ROW(4,-2),	ROW(5,9))	AS	t(x,y)	UNION	TABLE	t2;	SELECT	*	FROM	(VALUES	ROW(4,-2),	ROW(5,9))	AS	t(x,y)	UNION	VALUES
ROW(4,-2),ROW(5,9);	UNION	DISTINCT	and	UNION	ALL	By	default,	duplicate	rows	are	removed	from	UNION	results.	The	optional	DISTINCT	keyword	has	the	same	effect	but	makes	it	explicit.	With	the	optional	ALL	keyword,	duplicate-row	removal	does	not	occur	and	the	result	includes	all	matching	rows	from	all	the	SELECT	statements.	You	can	mix
UNION	ALL	and	UNION	DISTINCT	in	the	same	query.	Mixed	UNION	types	are	treated	such	that	a	DISTINCT	union	overrides	any	ALL	union	to	its	left.	A	DISTINCT	union	can	be	produced	explicitly	by	using	UNION	DISTINCT	or	implicitly	by	using	UNION	with	no	following	DISTINCT	or	ALL	keyword.	In	MySQL	8.0.19	and	later,	UNION	ALL	and
UNION	DISTINCT	work	the	same	way	when	one	or	more	TABLE	statements	are	used	in	the	union.	ORDER	BY	and	LIMIT	in	Unions	To	apply	an	ORDER	BY	or	LIMIT	clause	to	an	individual	SELECT,	parenthesize	the	SELECT	and	place	the	clause	inside	the	parentheses:	(SELECT	a	FROM	t1	WHERE	a=10	AND	B=1	ORDER	BY	a	LIMIT	10)	UNION
(SELECT	a	FROM	t2	WHERE	a=11	AND	B=2	ORDER	BY	a	LIMIT	10);	Use	of	ORDER	BY	for	individual	SELECT	statements	implies	nothing	about	the	order	in	which	the	rows	appear	in	the	final	result	because	UNION	by	default	produces	an	unordered	set	of	rows.	Therefore,	ORDER	BY	in	this	context	typically	is	used	in	conjunction	with	LIMIT,	to
determine	the	subset	of	the	selected	rows	to	retrieve	for	the	SELECT,	even	though	it	does	not	necessarily	affect	the	order	of	those	rows	in	the	final	UNION	result.	If	ORDER	BY	appears	without	LIMIT	in	a	SELECT,	it	is	optimized	away	because	it	has	no	effect	in	any	case.	To	use	an	ORDER	BY	or	LIMIT	clause	to	sort	or	limit	the	entire	UNION	result,
parenthesize	the	individual	SELECT	statements	and	place	the	ORDER	BY	or	LIMIT	after	the	last	one:	(SELECT	a	FROM	t1	WHERE	a=10	AND	B=1)	UNION	(SELECT	a	FROM	t2	WHERE	a=11	AND	B=2)	ORDER	BY	a	LIMIT	10;	A	statement	without	parentheses	is	equivalent	to	one	parenthesized	as	just	shown.	Beginning	with	MySQL	8.0.19,	you	can
use	ORDER	BY	and	LIMIT	with	TABLE	in	unions	in	the	same	way	as	just	shown,	bearing	in	mind	that	TABLE	does	not	support	a	WHERE	clause.	This	kind	of	ORDER	BY	cannot	use	column	references	that	include	a	table	name	(that	is,	names	in	tbl_name.col_name	format).	Instead,	provide	a	column	alias	in	the	first	SELECT	statement	and	refer	to	the
alias	in	the	ORDER	BY.	(Alternatively,	refer	to	the	column	in	the	ORDER	BY	using	its	column	position.	However,	use	of	column	positions	is	deprecated.)	Also,	if	a	column	to	be	sorted	is	aliased,	the	ORDER	BY	clause	must	refer	to	the	alias,	not	the	column	name.	The	first	of	the	following	statements	is	permitted,	but	the	second	fails	with	an	Unknown
column	'a'	in	'order	clause'	error:	(SELECT	a	AS	b	FROM	t)	UNION	(SELECT	...)	ORDER	BY	b;	(SELECT	a	AS	b	FROM	t)	UNION	(SELECT	...)	ORDER	BY	a;	To	cause	rows	in	a	UNION	result	to	consist	of	the	sets	of	rows	retrieved	by	each	SELECT	one	after	the	other,	select	an	additional	column	in	each	SELECT	to	use	as	a	sort	column	and	add	an
ORDER	BY	that	sorts	on	that	column	following	the	last	SELECT:	(SELECT	1	AS	sort_col,	col1a,	col1b,	...	FROM	t1)	UNION	(SELECT	2,	col2a,	col2b,	...	FROM	t2)	ORDER	BY	sort_col;	To	additionally	maintain	sort	order	within	individual	SELECT	results,	add	a	secondary	column	to	the	ORDER	BY	clause:	(SELECT	1	AS	sort_col,	col1a,	col1b,	...	FROM	t1)
UNION	(SELECT	2,	col2a,	col2b,	...	FROM	t2)	ORDER	BY	sort_col,	col1a;	Use	of	an	additional	column	also	enables	you	to	determine	which	SELECT	each	row	comes	from.	Extra	columns	can	provide	other	identifying	information	as	well,	such	as	a	string	that	indicates	a	table	name.	UNION	Restrictions	In	a	UNION,	the	SELECT	statements	are	normal
select	statements,	but	with	the	following	restrictions:	HIGH_PRIORITY	in	the	first	SELECT	has	no	effect.	HIGH_PRIORITY	in	any	subsequent	SELECT	produces	a	syntax	error.	Only	the	last	SELECT	statement	can	use	an	INTO	clause.	However,	the	entire	UNION	result	is	written	to	the	INTO	output	destination.	As	of	MySQL	8.0.20,	these	two	UNION
variants	containing	INTO	are	deprecated	and	you	should	expect	support	for	them	to	be	removed	in	a	future	version	of	MySQL:	In	the	trailing	query	block	of	a	query	expression,	use	of	INTO	before	FROM	produces	a	warning.	Example:	...	UNION	SELECT	*	INTO	OUTFILE	'file_name'	FROM	table_name;	In	a	parenthesized	trailing	block	of	a	query
expression,	use	of	INTO	(regardless	of	its	position	relative	to	FROM)	produces	a	warning.	Example:	...	UNION	(SELECT	*	INTO	OUTFILE	'file_name'	FROM	table_name);	Those	variants	are	deprecated	because	they	are	confusing,	as	if	they	collect	information	from	the	named	table	rather	than	the	entire	query	expression	(the	UNION).	UNION	queries
with	an	aggregate	function	in	an	ORDER	BY	clause	are	rejected	with	an	ER_AGGREGATE_ORDER_FOR_UNION	error.	Example:	SELECT	1	AS	foo	UNION	SELECT	2	ORDER	BY	MAX(1);	UNION	Handing	in	MySQL	8.0	Compared	to	MySQL	5.7	In	MySQL	8.0,	the	parser	rules	for	SELECT	and	UNION	were	refactored	to	be	more	consistent	(the	same
SELECT	syntax	applies	uniformly	in	each	such	context)	and	reduce	duplication.	Compared	to	MySQL	5.7,	several	user-visible	effects	resulted	from	this	work,	which	may	require	rewriting	of	certain	statements:	NATURAL	JOIN	permits	an	optional	INNER	keyword	(NATURAL	INNER	JOIN),	in	compliance	with	standard	SQL.	Right-deep	joins	without
parentheses	are	permitted	(for	example,	...	JOIN	...	JOIN	...	ON	...	ON),	in	compliance	with	standard	SQL.	STRAIGHT_JOIN	now	permits	a	USING	clause,	similar	to	other	inner	joins.	The	parser	accepts	parentheses	around	query	expressions.	For	example,	(SELECT	...	UNION	SELECT	...)	is	permitted.	See	also	Section	13.2.10.4,	“Parenthesized	Query
Expressions”.	The	parser	better	conforms	to	the	documented	permitted	placement	of	the	SQL_CACHE	and	SQL_NO_CACHE	query	modifiers.	Left-hand	nesting	of	unions,	previously	permitted	only	in	subqueries,	is	now	permitted	in	top-level	statements.	For	example,	this	statement	is	now	accepted	as	valid:	(SELECT	1	UNION	SELECT	1)	UNION
SELECT	1;	Locking	clauses	(FOR	UPDATE,	LOCK	IN	SHARE	MODE)	are	allowed	only	in	non-UNION	queries.	This	means	that	parentheses	must	be	used	for	SELECT	statements	containing	locking	clauses.	This	statement	is	no	longer	accepted	as	valid:	SELECT	1	FOR	UPDATE	UNION	SELECT	1	FOR	UPDATE;	Instead,	write	the	statement	like	this:
(SELECT	1	FOR	UPDATE)	UNION	(SELECT	1	FOR	UPDATE);	Page	3	13.2.10.4	Parenthesized	Query	Expressions	parenthesized_query_expression:	(	query_expression	[order_by_clause]	[limit_clause]	)	[order_by_clause]	[limit_clause]	[into_clause]	query_expression:	query_block	[UNION	query_block	[UNION	query_block	...]]	[order_by_clause]
[limit_clause]	[into_clause]	query_block:	SELECT	...	(see	Section	13.2.10,	“SELECT	Statement”)	order_by_clause:	ORDER	BY	as	for	SELECT	(see	Section	13.2.10,	“SELECT	Statement”)	limit_clause:	LIMIT	as	for	SELECT	(see	Section	13.2.10,	“SELECT	Statement”)	into_clause:	INTO	as	for	SELECT	(see	Section	13.2.10,	“SELECT	Statement”)	MySQL
8.0.22	and	higher	supports	parenthesized	query	expressions	according	to	the	preceding	syntax.	At	its	simplest,	a	parenthesized	query	expression	contains	a	single	SELECT	and	no	following	optional	clauses:	(SELECT	1);	(SELECT	*	FROM	INFORMATION_SCHEMA.SCHEMATA	WHERE	SCHEMA_NAME	=	'mysql');	A	parenthesized	query	expression
can	also	contain	a	UNION	comprising	multiple	SELECT	statements,	and	end	with	any	or	all	of	the	optional	clauses:	mysql>	(SELECT	1	AS	result	UNION	SELECT	2);	+--------+	|	result	|	+--------+	|	1	|	|	2	|	+--------+	mysql>	(SELECT	1	AS	result	UNION	SELECT	2)	LIMIT	1;	+--------+	|	result	|	+--------+	|	1	|	+--------+	mysql>	(SELECT	1	AS	result	UNION
SELECT	2)	LIMIT	1	OFFSET	1;	+--------+	|	result	|	+--------+	|	2	|	+--------+	mysql>	(SELECT	1	AS	result	UNION	SELECT	2)	ORDER	BY	result	DESC	LIMIT	1;	+--------+	|	result	|	+--------+	|	2	|	+--------+	mysql>	(SELECT	1	AS	result	UNION	SELECT	2)	ORDER	BY	result	DESC	LIMIT	1	OFFSET	1;	+--------+	|	result	|	+--------+	|	1	|	+--------+	mysql>	(SELECT	1
AS	result	UNION	SELECT	3	UNION	SELECT	2)	ORDER	BY	result	LIMIT	1	OFFSET	1	INTO	@var;	mysql>	SELECT	@var;	+------+	|	@var	|	+------+	|	2	|	+------+	Parenthesized	query	expressions	are	also	used	as	query	expressions,	so	a	query	expression,	usually	composed	of	query	blocks,	may	also	consist	of	parenthesized	query	expressions:	(SELECT	*
FROM	t1	ORDER	BY	a)	UNION	(SELECT	*	FROM	t2	ORDER	BY	b)	ORDER	BY	z;	Query	blocks	may	have	trailing	ORDER	BY	and	LIMIT	clauses,	which	are	applied	before	the	outer	UNION	and	ORDER	BY	and	LIMIT.	You	cannot	have	a	query	block	with	a	trailing	ORDER	BY	or	LIMIT,	without	wrapping	it	in	parentheses,	but	parentheses	may	be	used	for
enforcement	in	various	ways:	To	enforce	LIMIT	on	each	query	block:	(SELECT	1	LIMIT	1)	UNION	(SELECT	2	LIMIT	1);	To	enforce	LIMIT	on	both	query	blocks	and	the	entire	query	expression:	(SELECT	1	LIMIT	1)	UNION	(SELECT	2	LIMIT	1)	LIMIT	1;	To	enforce	LIMIT	on	the	entire	query	expression	(with	no	parentheses):	SELECT	1	UNION	SELECT
2	LIMIT	1;	Hybrid	enforcement:	LIMIT	on	the	first	query	block	and	on	the	entire	query	expression:	(SELECT	1	LIMIT	1)	UNION	SELECT	2	LIMIT	1;	The	syntax	described	in	this	section	is	subject	to	certain	restrictions:	If	ORDER	BY	occurs	within	a	parenthesized	query	expression	and	also	is	applied	in	the	outer	query,	the	results	are	undefined	and
may	change	in	a	future	version	of	MySQL.	The	same	is	true	if	LIMIT	occurs	within	a	parenthesized	query	expression	and	also	is	applied	in	the	outer	query.	A	trailing	INTO	clause	for	a	query	expression	is	not	permitted	if	there	is	another	INTO	clause	inside	parentheses.	Parenthesized	query	expressions	do	not	permit	multiple	levels	of	ORDER	BY	or
LIMIT	operations.	For	example:	mysql>	(SELECT	'a'	UNION	SELECT	'b'	LIMIT	1)	LIMIT	2;	ERROR	1235	(42000):	This	version	of	MySQL	doesn't	yet	support	'parenthesized	query	expression	with	more	than	one	external	level	of	ORDER/LIMIT	operations'	Page	4	A	subquery	is	a	SELECT	statement	within	another	statement.	All	subquery	forms	and
operations	that	the	SQL	standard	requires	are	supported,	as	well	as	a	few	features	that	are	MySQL-specific.	Here	is	an	example	of	a	subquery:	SELECT	*	FROM	t1	WHERE	column1	=	(SELECT	column1	FROM	t2);	In	this	example,	SELECT	*	FROM	t1	...	is	the	outer	query	(or	outer	statement),	and	(SELECT	column1	FROM	t2)	is	the	subquery.	We	say
that	the	subquery	is	nested	within	the	outer	query,	and	in	fact	it	is	possible	to	nest	subqueries	within	other	subqueries,	to	a	considerable	depth.	A	subquery	must	always	appear	within	parentheses.	The	main	advantages	of	subqueries	are:	They	allow	queries	that	are	structured	so	that	it	is	possible	to	isolate	each	part	of	a	statement.	They	provide
alternative	ways	to	perform	operations	that	would	otherwise	require	complex	joins	and	unions.	Many	people	find	subqueries	more	readable	than	complex	joins	or	unions.	Indeed,	it	was	the	innovation	of	subqueries	that	gave	people	the	original	idea	of	calling	the	early	SQL	“Structured	Query	Language.”	Here	is	an	example	statement	that	shows	the
major	points	about	subquery	syntax	as	specified	by	the	SQL	standard	and	supported	in	MySQL:	DELETE	FROM	t1	WHERE	s11	>	ANY	(SELECT	COUNT(*)	/*	no	hint	*/	FROM	t2	WHERE	NOT	EXISTS	(SELECT	*	FROM	t3	WHERE	ROW(5*t2.s1,77)=	(SELECT	50,11*s1	FROM	t4	UNION	SELECT	50,77	FROM	(SELECT	*	FROM	t5)	AS	t5)));	A	subquery
can	return	a	scalar	(a	single	value),	a	single	row,	a	single	column,	or	a	table	(one	or	more	rows	of	one	or	more	columns).	These	are	called	scalar,	column,	row,	and	table	subqueries.	Subqueries	that	return	a	particular	kind	of	result	often	can	be	used	only	in	certain	contexts,	as	described	in	the	following	sections.	There	are	few	restrictions	on	the	type
of	statements	in	which	subqueries	can	be	used.	A	subquery	can	contain	many	of	the	keywords	or	clauses	that	an	ordinary	SELECT	can	contain:	DISTINCT,	GROUP	BY,	ORDER	BY,	LIMIT,	joins,	index	hints,	UNION	constructs,	comments,	functions,	and	so	on.	Beginning	with	MySQL	8.0.19,	TABLE	and	VALUES	statements	can	be	used	in	subqueries.
Subqueries	using	VALUES	are	generally	more	verbose	versions	of	subqueries	that	can	be	rewritten	more	compactly	using	set	notation,	or	with	SELECT	or	TABLE	syntax;	assuming	that	table	ts	is	created	using	the	statement	CREATE	TABLE	ts	VALUES	ROW(2),	ROW(4),	ROW(6),	the	statements	shown	here	are	all	equivalent:	SELECT	*	FROM	tt
WHERE	b	>	ANY	(VALUES	ROW(2),	ROW(4),	ROW(6));	SELECT	*	FROM	tt	WHERE	b	>	ANY	(2,	4,	6);	SELECT	*	FROM	tt	WHERE	b	>	ANY	(SELECT	*	FROM	ts);	SELECT	*	FROM	tt	WHERE	b	>	ANY	(TABLE	ts);	Examples	of	TABLE	subqueries	are	shown	in	the	sections	that	follow.	A	subquery's	outer	statement	can	be	any	one	of:	SELECT,	INSERT,
UPDATE,	DELETE,	SET,	or	DO.	For	information	about	how	the	optimizer	handles	subqueries,	see	Section	8.2.2,	“Optimizing	Subqueries,	Derived	Tables,	View	References,	and	Common	Table	Expressions”.	For	a	discussion	of	restrictions	on	subquery	use,	including	performance	issues	for	certain	forms	of	subquery	syntax,	see	Section	13.2.11.12,
“Restrictions	on	Subqueries”.	Page	5	13.2.11.1	The	Subquery	as	Scalar	Operand	In	its	simplest	form,	a	subquery	is	a	scalar	subquery	that	returns	a	single	value.	A	scalar	subquery	is	a	simple	operand,	and	you	can	use	it	almost	anywhere	a	single	column	value	or	literal	is	legal,	and	you	can	expect	it	to	have	those	characteristics	that	all	operands	have:
a	data	type,	a	length,	an	indication	that	it	can	be	NULL,	and	so	on.	For	example:	CREATE	TABLE	t1	(s1	INT,	s2	CHAR(5)	NOT	NULL);	INSERT	INTO	t1	VALUES(100,	'abcde');	SELECT	(SELECT	s2	FROM	t1);	The	subquery	in	this	SELECT	returns	a	single	value	('abcde')	that	has	a	data	type	of	CHAR,	a	length	of	5,	a	character	set	and	collation	equal	to
the	defaults	in	effect	at	CREATE	TABLE	time,	and	an	indication	that	the	value	in	the	column	can	be	NULL.	Nullability	of	the	value	selected	by	a	scalar	subquery	is	not	copied	because	if	the	subquery	result	is	empty,	the	result	is	NULL.	For	the	subquery	just	shown,	if	t1	were	empty,	the	result	would	be	NULL	even	though	s2	is	NOT	NULL.	There	are	a
few	contexts	in	which	a	scalar	subquery	cannot	be	used.	If	a	statement	permits	only	a	literal	value,	you	cannot	use	a	subquery.	For	example,	LIMIT	requires	literal	integer	arguments,	and	LOAD	DATA	requires	a	literal	string	file	name.	You	cannot	use	subqueries	to	supply	these	values.	When	you	see	examples	in	the	following	sections	that	contain	the
rather	spartan	construct	(SELECT	column1	FROM	t1),	imagine	that	your	own	code	contains	much	more	diverse	and	complex	constructions.	Suppose	that	we	make	two	tables:	CREATE	TABLE	t1	(s1	INT);	INSERT	INTO	t1	VALUES	(1);	CREATE	TABLE	t2	(s1	INT);	INSERT	INTO	t2	VALUES	(2);	Then	perform	a	SELECT:	SELECT	(SELECT	s1	FROM	t2)
FROM	t1;	The	result	is	2	because	there	is	a	row	in	t2	containing	a	column	s1	that	has	a	value	of	2.	In	MySQL	8.0.19	and	later,	the	preceding	query	can	also	be	written	like	this,	using	TABLE:	SELECT	(TABLE	t2)	FROM	t1;	A	scalar	subquery	can	be	part	of	an	expression,	but	remember	the	parentheses,	even	if	the	subquery	is	an	operand	that	provides
an	argument	for	a	function.	For	example:	SELECT	UPPER((SELECT	s1	FROM	t1))	FROM	t2;	The	same	result	can	be	obtained	in	MySQL	8.0.19	and	later	using	SELECT	UPPER((TABLE	t1))	FROM	t2.	Page	6	13.2.11.2	Comparisons	Using	Subqueries	The	most	common	use	of	a	subquery	is	in	the	form:	non_subquery_operand	comparison_operator
(subquery)	Where	comparison_operator	is	one	of	these	operators:	=	>	<	>=	<	>=	ANY	(SELECT	s1	FROM	t2);	Suppose	that	there	is	a	row	in	table	t1	containing	(10).	The	expression	is	TRUE	if	table	t2	contains	(21,14,7)	because	there	is	a	value	7	in	t2	that	is	less	than	10.	The	expression	is	FALSE	if	table	t2	contains	(20,10),	or	if	table	t2	is	empty.	The
expression	is	unknown	(that	is,	NULL)	if	table	t2	contains	(NULL,NULL,NULL).	When	used	with	a	subquery,	the	word	IN	is	an	alias	for	=	ANY.	Thus,	these	two	statements	are	the	same:	SELECT	s1	FROM	t1	WHERE	s1	=	ANY	(SELECT	s1	FROM	t2);	SELECT	s1	FROM	t1	WHERE	s1	IN	(SELECT	s1	FROM	t2);	IN	and	=	ANY	are	not	synonyms	when
used	with	an	expression	list.	IN	can	take	an	expression	list,	but	=	ANY	cannot.	See	Section	12.4.2,	“Comparison	Functions	and	Operators”.	NOT	IN	is	not	an	alias	for	ANY,	but	for	ALL.	See	Section	13.2.11.4,	“Subqueries	with	ALL”.	The	word	SOME	is	an	alias	for	ANY.	Thus,	these	two	statements	are	the	same:	SELECT	s1	FROM	t1	WHERE	s1	ANY
(SELECT	s1	FROM	t2);	SELECT	s1	FROM	t1	WHERE	s1	SOME	(SELECT	s1	FROM	t2);	Use	of	the	word	SOME	is	rare,	but	this	example	shows	why	it	might	be	useful.	To	most	people,	the	English	phrase	“a	is	not	equal	to	any	b”	means	“there	is	no	b	which	is	equal	to	a,”	but	that	is	not	what	is	meant	by	the	SQL	syntax.	The	syntax	means	“there	is	some
b	to	which	a	is	not	equal.”	Using	SOME	instead	helps	ensure	that	everyone	understands	the	true	meaning	of	the	query.	Beginning	with	MySQL	8.0.19,	you	can	use	TABLE	in	a	scalar	IN,	ANY,	or	SOME	subquery	provided	the	table	contains	only	a	single	column.	If	t2	has	only	one	column,	the	statements	shown	previously	in	this	section	can	be	written	as
shown	here,	in	each	case	substituting	TABLE	t2	for	SELECT	s1	FROM	t2:	SELECT	s1	FROM	t1	WHERE	s1	>	ANY	(TABLE	t2);	SELECT	s1	FROM	t1	WHERE	s1	=	ANY	(TABLE	t2);	SELECT	s1	FROM	t1	WHERE	s1	IN	(TABLE	t2);	SELECT	s1	FROM	t1	WHERE	s1	ANY	(TABLE	t2);	SELECT	s1	FROM	t1	WHERE	s1	SOME	(TABLE	t2);	Page	8
13.2.11.4	Subqueries	with	ALL	Syntax:	operand	comparison_operator	ALL	(subquery)	The	word	ALL,	which	must	follow	a	comparison	operator,	means	“return	TRUE	if	the	comparison	is	TRUE	for	ALL	of	the	values	in	the	column	that	the	subquery	returns.”	For	example:	SELECT	s1	FROM	t1	WHERE	s1	>	ALL	(SELECT	s1	FROM	t2);	Suppose	that
there	is	a	row	in	table	t1	containing	(10).	The	expression	is	TRUE	if	table	t2	contains	(-5,0,+5)	because	10	is	greater	than	all	three	values	in	t2.	The	expression	is	FALSE	if	table	t2	contains	(12,6,NULL,-100)	because	there	is	a	single	value	12	in	table	t2	that	is	greater	than	10.	The	expression	is	unknown	(that	is,	NULL)	if	table	t2	contains	(0,NULL,1).
Finally,	the	expression	is	TRUE	if	table	t2	is	empty.	So,	the	following	expression	is	TRUE	when	table	t2	is	empty:	SELECT	*	FROM	t1	WHERE	1	>	ALL	(SELECT	s1	FROM	t2);	But	this	expression	is	NULL	when	table	t2	is	empty:	SELECT	*	FROM	t1	WHERE	1	>	(SELECT	s1	FROM	t2);	In	addition,	the	following	expression	is	NULL	when	table	t2	is
empty:	SELECT	*	FROM	t1	WHERE	1	>	ALL	(SELECT	MAX(s1)	FROM	t2);	In	general,	tables	containing	NULL	values	and	empty	tables	are	“edge	cases.”	When	writing	subqueries,	always	consider	whether	you	have	taken	those	two	possibilities	into	account.	NOT	IN	is	an	alias	for	ALL.	Thus,	these	two	statements	are	the	same:	SELECT	s1	FROM	t1
WHERE	s1	ALL	(SELECT	s1	FROM	t2);	SELECT	s1	FROM	t1	WHERE	s1	NOT	IN	(SELECT	s1	FROM	t2);	MySQL	8.0.19	supports	the	TABLE	statement.	As	with	IN,	ANY,	and	SOME,	you	can	use	TABLE	with	ALL	and	NOT	IN	provided	that	the	following	two	conditions	are	met:	The	table	in	the	subquery	contains	only	one	column	The	subquery	does	not
depend	on	a	column	expression	For	example,	assuming	that	table	t2	consists	of	a	single	column,	the	last	two	statements	shown	previously	can	be	written	using	TABLE	t2	like	this:	SELECT	s1	FROM	t1	WHERE	s1	ALL	(TABLE	t2);	SELECT	s1	FROM	t1	WHERE	s1	NOT	IN	(TABLE	t2);	A	query	such	as	SELECT	*	FROM	t1	WHERE	1	>	ALL	(SELECT
MAX(s1)	FROM	t2);	cannot	be	written	using	TABLE	t2	because	the	subquery	depends	on	a	column	expression.	Page	9	Scalar	or	column	subqueries	return	a	single	value	or	a	column	of	values.	A	row	subquery	is	a	subquery	variant	that	returns	a	single	row	and	can	thus	return	more	than	one	column	value.	Legal	operators	for	row	subquery	comparisons
are:	=	>	<	>=	1;	Result:	+------+------+------+	|	sb1	|	sb2	|	sb3	|	+------+------+------+	|	2	|	2	|	4	|	+------+------+------+	Here	is	another	example:	Suppose	that	you	want	to	know	the	average	of	a	set	of	sums	for	a	grouped	table.	This	does	not	work:	SELECT	AVG(SUM(column1))	FROM	t1	GROUP	BY	column1;	However,	this	query	provides	the	desired
information:	SELECT	AVG(sum_column1)	FROM	(SELECT	SUM(column1)	AS	sum_column1	FROM	t1	GROUP	BY	column1)	AS	t1;	Notice	that	the	column	name	used	within	the	subquery	(sum_column1)	is	recognized	in	the	outer	query.	The	column	names	for	a	derived	table	come	from	its	select	list:	mysql>	SELECT	*	FROM	(SELECT	1,	2,	3,	4)	AS	dt;
+---+---+---+---+	|	1	|	2	|	3	|	4	|	+---+---+---+---+	|	1	|	2	|	3	|	4	|	+---+---+---+---+	To	provide	column	names	explicitly,	follow	the	derived	table	name	with	a	parenthesized	list	of	column	names:	mysql>	SELECT	*	FROM	(SELECT	1,	2,	3,	4)	AS	dt	(a,	b,	c,	d);	+---+---+---+---+	|	a	|	b	|	c	|	d	|	+---+---+---+---+	|	1	|	2	|	3	|	4	|	+---+---+---+---+	A	derived	table	can
return	a	scalar,	column,	row,	or	table.	Derived	tables	are	subject	to	these	restrictions:	A	derived	table	cannot	contain	references	to	other	tables	of	the	same	SELECT	(use	a	LATERAL	derived	table	for	that;	see	Section	13.2.11.9,	“Lateral	Derived	Tables”).	Prior	to	MySQL	8.0.14,	a	derived	table	cannot	contain	outer	references.	This	is	a	MySQL
restriction	that	is	lifted	in	MySQL	8.0.14,	not	a	restriction	of	the	SQL	standard.	For	example,	the	derived	table	dt	in	the	following	query	contains	a	reference	t1.b	to	the	table	t1	in	the	outer	query:	SELECT	*	FROM	t1	WHERE	t1.d	>	(SELECT	AVG(dt.a)	FROM	(SELECT	SUM(t2.a)	AS	a	FROM	t2	WHERE	t2.b	=	t1.b	GROUP	BY	t2.c)	dt	WHERE	dt.a	>
10);	The	query	is	valid	in	MySQL	8.0.14	and	higher.	Before	8.0.14,	it	produces	an	error:	Unknown	column	't1.b'	in	'where	clause'	The	optimizer	determines	information	about	derived	tables	in	such	a	way	that	EXPLAIN	does	not	need	to	materialize	them.	See	Section	8.2.2.4,	“Optimizing	Derived	Tables,	View	References,	and	Common	Table	Expressions
with	Merging	or	Materialization”.	It	is	possible	under	certain	circumstances	that	using	EXPLAIN	SELECT	modifies	table	data.	This	can	occur	if	the	outer	query	accesses	any	tables	and	an	inner	query	invokes	a	stored	function	that	changes	one	or	more	rows	of	a	table.	Suppose	that	there	are	two	tables	t1	and	t2	in	database	d1,	and	a	stored	function	f1
that	modifies	t2,	created	as	shown	here:	CREATE	DATABASE	d1;	USE	d1;	CREATE	TABLE	t1	(c1	INT);	CREATE	TABLE	t2	(c1	INT);	CREATE	FUNCTION	f1(p1	INT)	RETURNS	INT	BEGIN	INSERT	INTO	t2	VALUES	(p1);	RETURN	p1;	END;	Referencing	the	function	directly	in	an	EXPLAIN	SELECT	has	no	effect	on	t2,	as	shown	here:	mysql>	SELECT	*
FROM	t2;	Empty	set	(0.02	sec)	mysql>	EXPLAIN	SELECT	f1(5)\G	***************************	1.	row	***************************	id:	1	select_type:	SIMPLE	table:	NULL	partitions:	NULL	type:	NULL	possible_keys:	NULL	key:	NULL	key_len:	NULL	ref:	NULL	rows:	NULL	filtered:	NULL	Extra:	No	tables	used	1	row	in	set	(0.01	sec)	mysql>	SELECT	*
FROM	t2;	Empty	set	(0.01	sec)	This	is	because	the	SELECT	statement	did	not	reference	any	tables,	as	can	be	seen	in	the	table	and	Extra	columns	of	the	output.	This	is	also	true	of	the	following	nested	SELECT:	mysql>	EXPLAIN	SELECT	NOW()	AS	a1,	(SELECT	f1(5))	AS	a2\G	***************************	1.	row	***************************	id:	1
select_type:	PRIMARY	table:	NULL	type:	NULL	possible_keys:	NULL	key:	NULL	key_len:	NULL	ref:	NULL	rows:	NULL	filtered:	NULL	Extra:	No	tables	used	1	row	in	set,	1	warning	(0.00	sec)	mysql>	SHOW	WARNINGS;	+-------+------+------------------------------------------+	|	Level	|	Code	|	Message	|	+-------+------+------------------------------------------+	|	Note	|	1249	|
Select	2	was	reduced	during	optimization	|	+-------+------+------------------------------------------+	1	row	in	set	(0.00	sec)	mysql>	SELECT	*	FROM	t2;	Empty	set	(0.00	sec)	However,	if	the	outer	SELECT	references	any	tables,	the	optimizer	executes	the	statement	in	the	subquery	as	well,	with	the	result	that	t2	is	modified:	mysql>	EXPLAIN	SELECT	*	FROM	t1	AS
a1,	(SELECT	f1(5))	AS	a2\G	***************************	1.	row	***************************	id:	1	select_type:	PRIMARY	table:	partitions:	NULL	type:	system	possible_keys:	NULL	key:	NULL	key_len:	NULL	ref:	NULL	rows:	1	filtered:	100.00	Extra:	NULL	***************************	2.	row	***************************	id:	1	select_type:	PRIMARY	table:	a1
partitions:	NULL	type:	ALL	possible_keys:	NULL	key:	NULL	key_len:	NULL	ref:	NULL	rows:	1	filtered:	100.00	Extra:	NULL	***************************	3.	row	***************************	id:	2	select_type:	DERIVED	table:	NULL	partitions:	NULL	type:	NULL	possible_keys:	NULL	key:	NULL	key_len:	NULL	ref:	NULL	rows:	NULL	filtered:	NULL	Extra:	No
tables	used	3	rows	in	set	(0.00	sec)	mysql>	SELECT	*	FROM	t2;	+------+	|	c1	|	+------+	|	5	|	+------+	1	row	in	set	(0.00	sec)	This	also	means	that	an	EXPLAIN	SELECT	statement	such	as	the	one	shown	here	may	take	a	long	time	to	execute	because	the	BENCHMARK()	function	is	executed	once	for	each	row	in	t1:	EXPLAIN	SELECT	*	FROM	t1	AS	a1,
(SELECT	BENCHMARK(1000000,	MD5(NOW())));	The	derived	table	optimization	can	also	be	employed	with	many	correlated	(scalar)	subqueries	(MySQL	8.0.24	and	later).	For	more	information	and	examples,	see	Section	13.2.11.7,	“Correlated	Subqueries”.	Page	13	13.2.11.9	Lateral	Derived	Tables	A	derived	table	cannot	normally	refer	to	(depend	on)
columns	of	preceding	tables	in	the	same	FROM	clause.	As	of	MySQL	8.0.14,	a	derived	table	may	be	defined	as	a	lateral	derived	table	to	specify	that	such	references	are	permitted.	Nonlateral	derived	tables	are	specified	using	the	syntax	discussed	in	Section	13.2.11.8,	“Derived	Tables”.	The	syntax	for	a	lateral	derived	table	is	the	same	as	for	a
nonlateral	derived	table	except	that	the	keyword	LATERAL	is	specified	before	the	derived	table	specification.	The	LATERAL	keyword	must	precede	each	table	to	be	used	as	a	lateral	derived	table.	Lateral	derived	tables	are	subject	to	these	restrictions:	A	lateral	derived	table	can	occur	only	in	a	FROM	clause,	either	in	a	list	of	tables	separated	with
commas	or	in	a	join	specification	(JOIN,	INNER	JOIN,	CROSS	JOIN,	LEFT	[OUTER]	JOIN,	or	RIGHT	[OUTER]	JOIN).	If	a	lateral	derived	table	is	in	the	right	operand	of	a	join	clause	and	contains	a	reference	to	the	left	operand,	the	join	operation	must	be	an	INNER	JOIN,	CROSS	JOIN,	or	LEFT	[OUTER]	JOIN.	If	the	table	is	in	the	left	operand	and
contains	a	reference	to	the	right	operand,	the	join	operation	must	be	an	INNER	JOIN,	CROSS	JOIN,	or	RIGHT	[OUTER]	JOIN.	If	a	lateral	derived	table	references	an	aggregate	function,	the	function's	aggregation	query	cannot	be	the	one	that	owns	the	FROM	clause	in	which	the	lateral	derived	table	occurs.	Per	the	SQL	standard,	a	table	function	has
an	implicit	LATERAL,	so	it	behaves	as	in	MySQL	8.0	versions	prior	to	8.0.14.	However,	per	the	standard,	the	LATERAL	word	is	not	allowed	before	JSON_TABLE(),	even	though	it	is	implicit.	The	following	discussion	shows	how	lateral	derived	tables	make	possible	certain	SQL	operations	that	cannot	be	done	with	nonlateral	derived	tables	or	that	require
less-efficient	workarounds.	Suppose	that	we	want	to	solve	this	problem:	Given	a	table	of	people	in	a	sales	force	(where	each	row	describes	a	member	of	the	sales	force),	and	a	table	of	all	sales	(where	each	row	describes	a	sale:	salesperson,	customer,	amount,	date),	determine	the	size	and	customer	of	the	largest	sale	for	each	salesperson.	This	problem
can	be	approached	two	ways.	First	approach	to	solving	the	problem:	For	each	salesperson,	calculate	the	maximum	sale	size,	and	also	find	the	customer	who	provided	this	maximum.	In	MySQL,	that	can	be	done	like	this:	SELECT	salesperson.name,	--	find	maximum	sale	size	for	this	salesperson	(SELECT	MAX(amount)	AS	amount	FROM	all_sales
WHERE	all_sales.salesperson_id	=	salesperson.id)	AS	amount,	--	find	customer	for	this	maximum	size	(SELECT	customer_name	FROM	all_sales	WHERE	all_sales.salesperson_id	=	salesperson.id	AND	all_sales.amount	=	--	find	maximum	size,	again	(SELECT	MAX(amount)	AS	amount	FROM	all_sales	WHERE	all_sales.salesperson_id	=	salesperson.id))
AS	customer_name	FROM	salesperson;	That	query	is	inefficient	because	it	calculates	the	maximum	size	twice	per	salesperson	(once	in	the	first	subquery	and	once	in	the	second).	We	can	try	to	achieve	an	efficiency	gain	by	calculating	the	maximum	once	per	salesperson	and	“caching”	it	in	a	derived	table,	as	shown	by	this	modified	query:	SELECT
salesperson.name,	max_sale.amount,	max_sale_customer.customer_name	FROM	salesperson,	--	calculate	maximum	size,	cache	it	in	transient	derived	table	max_sale	(SELECT	MAX(amount)	AS	amount	FROM	all_sales	WHERE	all_sales.salesperson_id	=	salesperson.id)	AS	max_sale,	--	find	customer,	reusing	cached	maximum	size	(SELECT
customer_name	FROM	all_sales	WHERE	all_sales.salesperson_id	=	salesperson.id	AND	all_sales.amount	=	--	the	cached	maximum	size	max_sale.amount)	AS	max_sale_customer;	However,	the	query	is	illegal	in	SQL-92	because	derived	tables	cannot	depend	on	other	tables	in	the	same	FROM	clause.	Derived	tables	must	be	constant	over	the	query's
duration,	not	contain	references	to	columns	of	other	FROM	clause	tables.	As	written,	the	query	produces	this	error:	ERROR	1054	(42S22):	Unknown	column	'salesperson.id'	in	'where	clause'	In	SQL:1999,	the	query	becomes	legal	if	the	derived	tables	are	preceded	by	the	LATERAL	keyword	(which	means	“this	derived	table	depends	on	previous	tables
on	its	left	side”):	SELECT	salesperson.name,	max_sale.amount,	max_sale_customer.customer_name	FROM	salesperson,	--	calculate	maximum	size,	cache	it	in	transient	derived	table	max_sale	LATERAL	(SELECT	MAX(amount)	AS	amount	FROM	all_sales	WHERE	all_sales.salesperson_id	=	salesperson.id)	AS	max_sale,	--	find	customer,	reusing	cached
maximum	size	LATERAL	(SELECT	customer_name	FROM	all_sales	WHERE	all_sales.salesperson_id	=	salesperson.id	AND	all_sales.amount	=	--	the	cached	maximum	size	max_sale.amount)	AS	max_sale_customer;	A	lateral	derived	table	need	not	be	constant	and	is	brought	up	to	date	each	time	a	new	row	from	a	preceding	table	on	which	it	depends	is
processed	by	the	top	query.	Second	approach	to	solving	the	problem:	A	different	solution	could	be	used	if	a	subquery	in	the	SELECT	list	could	return	multiple	columns:	SELECT	salesperson.name,	--	find	maximum	size	and	customer	at	same	time	(SELECT	amount,	customer_name	FROM	all_sales	WHERE	all_sales.salesperson_id	=	salesperson.id
ORDER	BY	amount	DESC	LIMIT	1)	FROM	salesperson;	That	is	efficient	but	illegal.	It	does	not	work	because	such	subqueries	can	return	only	a	single	column:	ERROR	1241	(21000):	Operand	should	contain	1	column(s)	One	attempt	at	rewriting	the	query	is	to	select	multiple	columns	from	a	derived	table:	SELECT	salesperson.name,	max_sale.amount,
max_sale.customer_name	FROM	salesperson,	--	find	maximum	size	and	customer	at	same	time	(SELECT	amount,	customer_name	FROM	all_sales	WHERE	all_sales.salesperson_id	=	salesperson.id	ORDER	BY	amount	DESC	LIMIT	1)	AS	max_sale;	However,	that	also	does	not	work.	The	derived	table	is	dependent	on	the	salesperson	table	and	thus	fails
without	LATERAL:	ERROR	1054	(42S22):	Unknown	column	'salesperson.id'	in	'where	clause'	Adding	the	LATERAL	keyword	makes	the	query	legal:	SELECT	salesperson.name,	max_sale.amount,	max_sale.customer_name	FROM	salesperson,	--	find	maximum	size	and	customer	at	same	time	LATERAL	(SELECT	amount,	customer_name	FROM	all_sales
WHERE	all_sales.salesperson_id	=	salesperson.id	ORDER	BY	amount	DESC	LIMIT	1)	AS	max_sale;	In	short,	LATERAL	is	the	efficient	solution	to	all	drawbacks	in	the	two	approaches	just	discussed.	Page	14	13.2.11.10	Subquery	Errors	There	are	some	errors	that	apply	only	to	subqueries.	This	section	describes	them.	Unsupported	subquery	syntax:
ERROR	1235	(ER_NOT_SUPPORTED_YET)	SQLSTATE	=	42000	Message	=	"This	version	of	MySQL	doesn't	yet	support	'LIMIT	&	IN/ALL/ANY/SOME	subquery'"	This	means	that	MySQL	does	not	support	statements	like	the	following:	SELECT	*	FROM	t1	WHERE	s1	IN	(SELECT	s2	FROM	t2	ORDER	BY	s1	LIMIT	1)	Incorrect	number	of	columns	from
subquery:	ERROR	1241	(ER_OPERAND_COL)	SQLSTATE	=	21000	Message	=	"Operand	should	contain	1	column(s)"	This	error	occurs	in	cases	like	this:	SELECT	(SELECT	column1,	column2	FROM	t2)	FROM	t1;	You	may	use	a	subquery	that	returns	multiple	columns,	if	the	purpose	is	row	comparison.	In	other	contexts,	the	subquery	must	be	a	scalar
operand.	See	Section	13.2.11.5,	“Row	Subqueries”.	Incorrect	number	of	rows	from	subquery:	ERROR	1242	(ER_SUBSELECT_NO_1_ROW)	SQLSTATE	=	21000	Message	=	"Subquery	returns	more	than	1	row"	This	error	occurs	for	statements	where	the	subquery	must	return	at	most	one	row	but	returns	multiple	rows.	Consider	the	following	example:
SELECT	*	FROM	t1	WHERE	column1	=	(SELECT	column1	FROM	t2);	If	SELECT	column1	FROM	t2	returns	just	one	row,	the	previous	query	works.	If	the	subquery	returns	more	than	one	row,	error	1242	occurs.	In	that	case,	the	query	should	be	rewritten	as:	SELECT	*	FROM	t1	WHERE	column1	=	ANY	(SELECT	column1	FROM	t2);	Incorrectly	used
table	in	subquery:	Error	1093	(ER_UPDATE_TABLE_USED)	SQLSTATE	=	HY000	Message	=	"You	can't	specify	target	table	'x'	for	update	in	FROM	clause"	This	error	occurs	in	cases	such	as	the	following,	which	attempts	to	modify	a	table	and	select	from	the	same	table	in	the	subquery:	UPDATE	t1	SET	column2	=	(SELECT	MAX(column1)	FROM	t1);
You	can	use	a	common	table	expression	or	derived	table	to	work	around	this.	See	Section	13.2.11.12,	“Restrictions	on	Subqueries”.	In	MySQL	8.0.19	and	later,	all	of	the	errors	described	in	this	section	also	apply	when	using	TABLE	in	subqueries.	For	transactional	storage	engines,	the	failure	of	a	subquery	causes	the	entire	statement	to	fail.	For
nontransactional	storage	engines,	data	modifications	made	before	the	error	was	encountered	are	preserved.	Page	15	13.2.11.11	Optimizing	Subqueries	Development	is	ongoing,	so	no	optimization	tip	is	reliable	for	the	long	term.	The	following	list	provides	some	interesting	tricks	that	you	might	want	to	play	with.	See	also	Section	8.2.2,	“Optimizing
Subqueries,	Derived	Tables,	View	References,	and	Common	Table	Expressions”.	Move	clauses	from	outside	to	inside	the	subquery.	For	example,	use	this	query:	SELECT	*	FROM	t1	WHERE	s1	IN	(SELECT	s1	FROM	t1	UNION	ALL	SELECT	s1	FROM	t2);	Instead	of	this	query:	SELECT	*	FROM	t1	WHERE	s1	IN	(SELECT	s1	FROM	t1)	OR	s1	IN
(SELECT	s1	FROM	t2);	For	another	example,	use	this	query:	SELECT	(SELECT	column1	+	5	FROM	t1)	FROM	t2;	Instead	of	this	query:	SELECT	(SELECT	column1	FROM	t1)	+	5	FROM	t2;	Page	16	13.2.11.12	Restrictions	on	Subqueries	In	general,	you	cannot	modify	a	table	and	select	from	the	same	table	in	a	subquery.	For	example,	this	limitation
applies	to	statements	of	the	following	forms:	DELETE	FROM	t	WHERE	...	(SELECT	...	FROM	t	...);	UPDATE	t	...	WHERE	col	=	(SELECT	...	FROM	t	...);	{INSERT|REPLACE}	INTO	t	(SELECT	...	FROM	t	...);	Exception:	The	preceding	prohibition	does	not	apply	if	for	the	modified	table	you	are	using	a	derived	table	and	that	derived	table	is	materialized
rather	than	merged	into	the	outer	query.	(See	Section	8.2.2.4,	“Optimizing	Derived	Tables,	View	References,	and	Common	Table	Expressions	with	Merging	or	Materialization”.)	Example:	UPDATE	t	...	WHERE	col	=	(SELECT	*	FROM	(SELECT	...	FROM	t...)	AS	dt	...);	Here	the	result	from	the	derived	table	is	materialized	as	a	temporary	table,	so	the
relevant	rows	in	t	have	already	been	selected	by	the	time	the	update	to	t	takes	place.	In	general,	you	may	be	able	to	influence	the	optimizer	to	materialize	a	derived	table	by	adding	a	NO_MERGE	optimizer	hint.	See	Section	8.9.3,	“Optimizer	Hints”.	Row	comparison	operations	are	only	partially	supported:	For	expr	[NOT]	IN	subquery,	expr	can	be	an
n-tuple	(specified	using	row	constructor	syntax)	and	the	subquery	can	return	rows	of	n-tuples.	The	permitted	syntax	is	therefore	more	specifically	expressed	as	row_constructor	[NOT]	IN	table_subquery	For	expr	op	{ALL|ANY|SOME}	subquery,	expr	must	be	a	scalar	value	and	the	subquery	must	be	a	column	subquery;	it	cannot	return	multiple-column
rows.	In	other	words,	for	a	subquery	that	returns	rows	of	n-tuples,	this	is	supported:	(expr_1,	...,	expr_n)	[NOT]	IN	table_subquery	But	this	is	not	supported:	(expr_1,	...,	expr_n)	op	{ALL|ANY|SOME}	subquery	The	reason	for	supporting	row	comparisons	for	IN	but	not	for	the	others	is	that	IN	is	implemented	by	rewriting	it	as	a	sequence	of	=
comparisons	and	AND	operations.	This	approach	cannot	be	used	for	ALL,	ANY,	or	SOME.	Prior	to	MySQL	8.0.14,	subqueries	in	the	FROM	clause	cannot	be	correlated	subqueries.	They	are	materialized	in	whole	(evaluated	to	produce	a	result	set)	during	query	execution,	so	they	cannot	be	evaluated	per	row	of	the	outer	query.	The	optimizer	delays
materialization	until	the	result	is	needed,	which	may	permit	materialization	to	be	avoided.	See	Section	8.2.2.4,	“Optimizing	Derived	Tables,	View	References,	and	Common	Table	Expressions	with	Merging	or	Materialization”.	MySQL	does	not	support	LIMIT	in	subqueries	for	certain	subquery	operators:	mysql>	SELECT	*	FROM	t1	WHERE	s1	IN
(SELECT	s2	FROM	t2	ORDER	BY	s1	LIMIT	1);	ERROR	1235	(42000):	This	version	of	MySQL	doesn't	yet	support	'LIMIT	&	IN/ALL/ANY/SOME	subquery'	See	Section	13.2.11.10,	“Subquery	Errors”.	MySQL	permits	a	subquery	to	refer	to	a	stored	function	that	has	data-modifying	side	effects	such	as	inserting	rows	into	a	table.	For	example,	if	f()	inserts
rows,	the	following	query	can	modify	data:	SELECT	...	WHERE	x	IN	(SELECT	f()	...);	This	behavior	is	an	extension	to	the	SQL	standard.	In	MySQL,	it	can	produce	nondeterministic	results	because	f()	might	be	executed	a	different	number	of	times	for	different	executions	of	a	given	query	depending	on	how	the	optimizer	chooses	to	handle	it.	For
statement-based	or	mixed-format	replication,	one	implication	of	this	indeterminism	is	that	such	a	query	can	produce	different	results	on	the	source	and	its	replicas.	Page	17	TABLE	is	a	DML	statement	introduced	in	MySQL	8.0.19	which	returns	rows	and	columns	of	the	named	table.	TABLE	table_name	[ORDER	BY	column_name]	[LIMIT	number
[OFFSET	number]]	The	TABLE	statement	in	some	ways	acts	like	SELECT.	Given	the	existance	of	a	table	named	t,	the	following	two	statements	produce	identical	output:	TABLE	t;	SELECT	*	FROM	t;	You	can	order	and	limit	the	number	of	rows	produced	by	TABLE	using	ORDER	BY	and	LIMIT	clauses,	respectively.	These	function	identically	to	the	same
clauses	when	used	with	SELECT	(including	an	optional	OFFSET	clause	with	LIMIT),	as	you	can	see	here:	mysql>	TABLE	t;	+----+----+	|	a	|	b	|	+----+----+	|	1	|	2	|	|	6	|	7	|	|	9	|	5	|	|	10	|	-4	|	|	11	|	-1	|	|	13	|	3	|	|	14	|	6	|	+----+----+	7	rows	in	set	(0.00	sec)	mysql>	TABLE	t	ORDER	BY	b;	+----+----+	|	a	|	b	|	+----+----+	|	10	|	-4	|	|	11	|	-1	|	|	1	|	2	|	|	13	|	3	|	|	9	|	5	|	|
14	|	6	|	|	6	|	7	|	+----+----+	7	rows	in	set	(0.00	sec)	mysql>	TABLE	t	LIMIT	3;	+---+---+	|	a	|	b	|	+---+---+	|	1	|	2	|	|	6	|	7	|	|	9	|	5	|	+---+---+	3	rows	in	set	(0.00	sec)	mysql>	TABLE	t	ORDER	BY	b	LIMIT	3;	+----+----+	|	a	|	b	|	+----+----+	|	10	|	-4	|	|	11	|	-1	|	|	1	|	2	|	+----+----+	3	rows	in	set	(0.00	sec)	mysql>	TABLE	t	ORDER	BY	b	LIMIT	3	OFFSET	2;	+----+----+	|
a	|	b	|	+----+----+	|	1	|	2	|	|	13	|	3	|	|	9	|	5	|	+----+----+	3	rows	in	set	(0.00	sec)	TABLE	differs	from	SELECT	in	two	key	respects:	TABLE	always	displays	all	columns	of	the	table.	TABLE	does	not	allow	for	any	arbitrary	filtering	of	rows;	that	is,	TABLE	does	not	support	any	WHERE	clause.	For	limiting	which	table	columns	are	returned,	filtering	rows	beyond
what	can	be	accomplished	using	ORDER	BY	and	LIMIT,	or	both,	use	SELECT.	TABLE	can	be	used	with	temporary	tables.	TABLE	can	also	be	used	in	place	of	SELECT	in	a	number	of	other	constructs,	including	those	listed	here:	With	UNION,	as	shown	here:	mysql>	TABLE	t1;	+---+----+	|	a	|	b	|	+---+----+	|	2	|	10	|	|	5	|	3	|	|	7	|	8	|	+---+----+	3	rows	in	set
(0.00	sec)	mysql>	TABLE	t2;	+---+---+	|	a	|	b	|	+---+---+	|	1	|	2	|	|	3	|	4	|	|	6	|	7	|	+---+---+	3	rows	in	set	(0.00	sec)	mysql>	TABLE	t1	UNION	TABLE	t2;	+---+----+	|	a	|	b	|	+---+----+	|	2	|	10	|	|	5	|	3	|	|	7	|	8	|	|	1	|	2	|	|	3	|	4	|	|	6	|	7	|	+---+----+	6	rows	in	set	(0.00	sec)	The	UNION	just	shown	is	equivalent	to	the	following	statement:	mysql>	SELECT	*	FROM	t1
UNION	SELECT	*	FROM	t2;	+---+----+	|	a	|	b	|	+---+----+	|	2	|	10	|	|	5	|	3	|	|	7	|	8	|	|	1	|	2	|	|	3	|	4	|	|	6	|	7	|	+---+----+	6	rows	in	set	(0.00	sec)	TABLE	can	also	be	used	together	in	unions	with	SELECT	statements,	VALUES	statements,	or	both.	See	Section	13.2.10.3,	“UNION	Clause”.	With	INTO	to	populate	user	variables,	and	with	INTO	OUTFILE	or	INTO
DUMPFILE	to	write	table	data	to	a	file.	See	Section	13.2.10.1,	“SELECT	...	INTO	Statement”,	for	more	specific	information	and	examples.	In	many	cases	where	you	can	employ	subqueries.	Given	any	table	t1	with	a	column	named	a,	and	a	second	table	t2	having	a	single	column,	statements	such	as	the	following	are	possible:	SELECT	*	FROM	t1
WHERE	a	IN	(TABLE	t2);	Assuming	that	the	single	column	of	table	ts	is	named	x,	the	preceding	is	equivalent	to	each	of	the	statements	shown	here	(and	produces	exactly	the	same	result	in	either	case):	SELECT	*	FROM	t1	WHERE	a	IN	(SELECT	x	FROM	t2);	SELECT	*	FROM	t1	WHERE	a	IN	(SELECT	*	FROM	t2);	See	Section	13.2.11,	“Subqueries”,
for	more	information.	With	INSERT	and	REPLACE	statements,	where	you	would	otherwise	use	SELECT	*.	See	Section	13.2.6.1,	“INSERT	...	SELECT	Statement”,	for	more	information	and	examples.	TABLE	can	also	be	used	in	many	cases	in	place	of	the	SELECT	in	CREATE	TABLE	...	SELECT	or	CREATE	VIEW	...	SELECT.	See	the	descriptions	of	these
statements	for	more	information	and	examples.	Page	18	UPDATE	is	a	DML	statement	that	modifies	rows	in	a	table.	An	UPDATE	statement	can	start	with	a	WITH	clause	to	define	common	table	expressions	accessible	within	the	UPDATE.	See	Section	13.2.15,	“WITH	(Common	Table	Expressions)”.	Single-table	syntax:	UPDATE	[LOW_PRIORITY]
[IGNORE]	table_reference	SET	assignment_list	[WHERE	where_condition]	[ORDER	BY	...]	[LIMIT	row_count]	value:	{expr	|	DEFAULT}	assignment:	col_name	=	value	assignment_list:	assignment	[,	assignment]	...	Multiple-table	syntax:	UPDATE	[LOW_PRIORITY]	[IGNORE]	table_references	SET	assignment_list	[WHERE	where_condition]	For	the
single-table	syntax,	the	UPDATE	statement	updates	columns	of	existing	rows	in	the	named	table	with	new	values.	The	SET	clause	indicates	which	columns	to	modify	and	the	values	they	should	be	given.	Each	value	can	be	given	as	an	expression,	or	the	keyword	DEFAULT	to	set	a	column	explicitly	to	its	default	value.	The	WHERE	clause,	if	given,
specifies	the	conditions	that	identify	which	rows	to	update.	With	no	WHERE	clause,	all	rows	are	updated.	If	the	ORDER	BY	clause	is	specified,	the	rows	are	updated	in	the	order	that	is	specified.	The	LIMIT	clause	places	a	limit	on	the	number	of	rows	that	can	be	updated.	For	the	multiple-table	syntax,	UPDATE	updates	rows	in	each	table	named	in
table_references	that	satisfy	the	conditions.	Each	matching	row	is	updated	once,	even	if	it	matches	the	conditions	multiple	times.	For	multiple-table	syntax,	ORDER	BY	and	LIMIT	cannot	be	used.	For	partitioned	tables,	both	the	single-single	and	multiple-table	forms	of	this	statement	support	the	use	of	a	PARTITION	clause	as	part	of	a	table	reference.
This	option	takes	a	list	of	one	or	more	partitions	or	subpartitions	(or	both).	Only	the	partitions	(or	subpartitions)	listed	are	checked	for	matches,	and	a	row	that	is	not	in	any	of	these	partitions	or	subpartitions	is	not	updated,	whether	it	satisfies	the	where_condition	or	not.	Note	Unlike	the	case	when	using	PARTITION	with	an	INSERT	or	REPLACE
statement,	an	otherwise	valid	UPDATE	...	PARTITION	statement	is	considered	successful	even	if	no	rows	in	the	listed	partitions	(or	subpartitions)	match	the	where_condition.	For	more	information	and	examples,	see	Section	24.5,	“Partition	Selection”.	where_condition	is	an	expression	that	evaluates	to	true	for	each	row	to	be	updated.	For	expression
syntax,	see	Section	9.5,	“Expressions”.	table_references	and	where_condition	are	specified	as	described	in	Section	13.2.10,	“SELECT	Statement”.	You	need	the	UPDATE	privilege	only	for	columns	referenced	in	an	UPDATE	that	are	actually	updated.	You	need	only	the	SELECT	privilege	for	any	columns	that	are	read	but	not	modified.	The	UPDATE
statement	supports	the	following	modifiers:	With	the	LOW_PRIORITY	modifier,	execution	of	the	UPDATE	is	delayed	until	no	other	clients	are	reading	from	the	table.	This	affects	only	storage	engines	that	use	only	table-level	locking	(such	as	MyISAM,	MEMORY,	and	MERGE).	With	the	IGNORE	modifier,	the	update	statement	does	not	abort	even	if
errors	occur	during	the	update.	Rows	for	which	duplicate-key	conflicts	occur	on	a	unique	key	value	are	not	updated.	Rows	updated	to	values	that	would	cause	data	conversion	errors	are	updated	to	the	closest	valid	values	instead.	For	more	information,	see	The	Effect	of	IGNORE	on	Statement	Execution.	UPDATE	IGNORE	statements,	including	those
having	an	ORDER	BY	clause,	are	flagged	as	unsafe	for	statement-based	replication.	(This	is	because	the	order	in	which	the	rows	are	updated	determines	which	rows	are	ignored.)	Such	statements	produce	a	warning	in	the	error	log	when	using	statement-based	mode	and	are	written	to	the	binary	log	using	the	row-based	format	when	using	MIXED
mode.	(Bug	#11758262,	Bug	#50439)	See	Section	17.2.1.3,	“Determination	of	Safe	and	Unsafe	Statements	in	Binary	Logging”,	for	more	information.	If	you	access	a	column	from	the	table	to	be	updated	in	an	expression,	UPDATE	uses	the	current	value	of	the	column.	For	example,	the	following	statement	sets	col1	to	one	more	than	its	current	value:
UPDATE	t1	SET	col1	=	col1	+	1;	The	second	assignment	in	the	following	statement	sets	col2	to	the	current	(updated)	col1	value,	not	the	original	col1	value.	The	result	is	that	col1	and	col2	have	the	same	value.	This	behavior	differs	from	standard	SQL.	UPDATE	t1	SET	col1	=	col1	+	1,	col2	=	col1;	Single-table	UPDATE	assignments	are	generally
evaluated	from	left	to	right.	For	multiple-table	updates,	there	is	no	guarantee	that	assignments	are	carried	out	in	any	particular	order.	If	you	set	a	column	to	the	value	it	currently	has,	MySQL	notices	this	and	does	not	update	it.	If	you	update	a	column	that	has	been	declared	NOT	NULL	by	setting	to	NULL,	an	error	occurs	if	strict	SQL	mode	is	enabled;
otherwise,	the	column	is	set	to	the	implicit	default	value	for	the	column	data	type	and	the	warning	count	is	incremented.	The	implicit	default	value	is	0	for	numeric	types,	the	empty	string	('')	for	string	types,	and	the	“zero”	value	for	date	and	time	types.	See	Section	11.6,	“Data	Type	Default	Values”.	If	a	generated	column	is	updated	explicitly,	the	only
permitted	value	is	DEFAULT.	For	information	about	generated	columns,	see	Section	13.1.20.8,	“CREATE	TABLE	and	Generated	Columns”.	UPDATE	returns	the	number	of	rows	that	were	actually	changed.	The	mysql_info()	C	API	function	returns	the	number	of	rows	that	were	matched	and	updated	and	the	number	of	warnings	that	occurred	during	the
UPDATE.	You	can	use	LIMIT	row_count	to	restrict	the	scope	of	the	UPDATE.	A	LIMIT	clause	is	a	rows-matched	restriction.	The	statement	stops	as	soon	as	it	has	found	row_count	rows	that	satisfy	the	WHERE	clause,	whether	or	not	they	actually	were	changed.	If	an	UPDATE	statement	includes	an	ORDER	BY	clause,	the	rows	are	updated	in	the	order
specified	by	the	clause.	This	can	be	useful	in	certain	situations	that	might	otherwise	result	in	an	error.	Suppose	that	a	table	t	contains	a	column	id	that	has	a	unique	index.	The	following	statement	could	fail	with	a	duplicate-key	error,	depending	on	the	order	in	which	rows	are	updated:	UPDATE	t	SET	id	=	id	+	1;	For	example,	if	the	table	contains	1	and
2	in	the	id	column	and	1	is	updated	to	2	before	2	is	updated	to	3,	an	error	occurs.	To	avoid	this	problem,	add	an	ORDER	BY	clause	to	cause	the	rows	with	larger	id	values	to	be	updated	before	those	with	smaller	values:	UPDATE	t	SET	id	=	id	+	1	ORDER	BY	id	DESC;	You	can	also	perform	UPDATE	operations	covering	multiple	tables.	However,	you
cannot	use	ORDER	BY	or	LIMIT	with	a	multiple-table	UPDATE.	The	table_references	clause	lists	the	tables	involved	in	the	join.	Its	syntax	is	described	in	Section	13.2.10.2,	“JOIN	Clause”.	Here	is	an	example:	UPDATE	items,month	SET	items.price=month.price	WHERE	items.id=month.id;	The	preceding	example	shows	an	inner	join	that	uses	the
comma	operator,	but	multiple-table	UPDATE	statements	can	use	any	type	of	join	permitted	in	SELECT	statements,	such	as	LEFT	JOIN.	If	you	use	a	multiple-table	UPDATE	statement	involving	InnoDB	tables	for	which	there	are	foreign	key	constraints,	the	MySQL	optimizer	might	process	tables	in	an	order	that	differs	from	that	of	their	parent/child
relationship.	In	this	case,	the	statement	fails	and	rolls	back.	Instead,	update	a	single	table	and	rely	on	the	ON	UPDATE	capabilities	that	InnoDB	provides	to	cause	the	other	tables	to	be	modified	accordingly.	See	Section	13.1.20.5,	“FOREIGN	KEY	Constraints”.	You	cannot	update	a	table	and	select	directly	from	the	same	table	in	a	subquery.	You	can
work	around	this	by	using	a	multi-table	update	in	which	one	of	the	tables	is	derived	from	the	table	that	you	actually	wish	to	update,	and	referring	to	the	derived	table	using	an	alias.	Suppose	you	wish	to	update	a	table	named	items	which	is	defined	using	the	statement	shown	here:	CREATE	TABLE	items	(	id	BIGINT	NOT	NULL	AUTO_INCREMENT
PRIMARY	KEY,	wholesale	DECIMAL(6,2)	NOT	NULL	DEFAULT	0.00,	retail	DECIMAL(6,2)	NOT	NULL	DEFAULT	0.00,	quantity	BIGINT	NOT	NULL	DEFAULT	0	);	To	reduce	the	retail	price	of	any	items	for	which	the	markup	is	30%	or	greater	and	of	which	you	have	fewer	than	one	hundred	in	stock,	you	might	try	to	use	an	UPDATE	statement	such	as
the	one	following,	which	uses	a	subquery	in	the	WHERE	clause.	As	shown	here,	this	statement	does	not	work:	mysql>	UPDATE	items	>	SET	retail	=	retail	*	0.9	>	WHERE	id	IN	>	(SELECT	id	FROM	items	>	WHERE	retail	/	wholesale	>=	1.3	AND	quantity	>	100);	ERROR	1093	(HY000):	You	can't	specify	target	table	'items'	for	update	in	FROM	clause
Instead,	you	can	employ	a	multi-table	update	in	which	the	subquery	is	moved	into	the	list	of	tables	to	be	updated,	using	an	alias	to	reference	it	in	the	outermost	WHERE	clause,	like	this:	UPDATE	items,	(SELECT	id	FROM	items	WHERE	id	IN	(SELECT	id	FROM	items	WHERE	retail	/	wholesale	>=	1.3	AND	quantity	<	100))	AS	discounted	SET
items.retail	=	items.retail	*	0.9	WHERE	items.id	=	discounted.id;	Because	the	optimizer	tries	by	default	to	merge	the	derived	table	discounted	into	the	outermost	query	block,	this	works	only	if	you	force	materialization	of	the	derived	table.	You	can	do	this	by	setting	the	derived_merge	flag	of	the	optimizer_switch	system	variable	to	off	before	running
the	update,	or	by	using	the	NO_MERGE	optimizer	hint,	as	shown	here:	UPDATE	/*+	NO_MERGE(discounted)	*/	items,	(SELECT	id	FROM	items	WHERE	retail	/	wholesale	>=	1.3	AND	quantity	<	100)	AS	discounted	SET	items.retail	=	items.retail	*	0.9	WHERE	items.id	=	discounted.id;	The	advantage	of	using	the	optimizer	hint	in	such	a	case	is	that	it
applies	only	within	the	query	block	where	it	is	used,	so	that	it	is	not	necessary	to	change	the	value	of	optimizer_switch	again	after	executing	the	UPDATE.	Another	possibility	is	to	rewrite	the	subquery	so	that	it	does	not	use	IN	or	EXISTS,	like	this:	UPDATE	items,	(SELECT	id,	retail	/	wholesale	AS	markup,	quantity	FROM	items)	AS	discounted	SET
items.retail	=	items.retail	*	0.9	WHERE	discounted.markup	>=	1.3	AND	discounted.quantity	<	100	AND	items.id	=	discounted.id;	In	this	case,	the	subquery	is	materialized	by	default	rather	than	merged,	so	it	is	not	necessary	to	disable	merging	of	the	derived	table.	Page	19	VALUES	is	a	DML	statement	introduced	in	MySQL	8.0.19	which	returns	a	set
of	one	or	more	rows	as	a	table.	In	other	words,	it	is	a	table	value	constructor	which	also	functions	as	a	standalone	SQL	statement.	VALUES	row_constructor_list	[ORDER	BY	column_designator]	[LIMIT	BY	number]	row_constructor_list:	ROW(value_list)[,	ROW(value_list)][,	...]	value_list:	value[,	value][,	...]	column_designator:	column_index	The	VALUES
statement	consists	of	the	VALUES	keyword	followed	by	a	list	of	one	or	more	row	constructors,	separated	by	commas.	A	row	constructor	consists	of	the	ROW()	row	constructor	clause	with	a	value	list	of	one	or	more	scalar	values	enclosed	in	the	parentheses.	A	value	can	be	a	literal	of	any	MySQL	data	type	or	an	expression	that	resolves	to	a	scalar	value.
ROW()	cannot	be	empty	(but	each	of	the	supplied	scalar	values	can	be	NULL).	Each	ROW()	in	the	same	VALUES	statement	must	have	the	same	number	of	values	in	its	value	list.	The	DEFAULT	keyword	is	not	supported	by	VALUES	and	causes	a	syntax	error,	except	when	it	is	used	to	supply	values	in	an	INSERT	statement.	The	output	of	VALUES	is	a
table:	mysql>	VALUES	ROW(1,-2,3),	ROW(5,7,9),	ROW(4,6,8);	+----------+----------+----------+	|	column_0	|	column_1	|	column_2	|	+----------+----------+----------+	|	1	|	-2	|	3	|	|	5	|	7	|	9	|	|	4	|	6	|	8	|	+----------+----------+----------+	3	rows	in	set	(0.00	sec)	The	columns	of	the	table	output	from	VALUES	have	the	implicitly	named	columns	column_0,	column_1,	column_2,
and	so	on,	always	beginning	with	0.	This	fact	can	be	used	to	order	the	rows	by	column	using	an	optional	ORDER	BY	clause	in	the	same	way	that	this	clause	works	with	a	SELECT	statement,	as	shown	here:	mysql>	VALUES	ROW(1,-2,3),	ROW(5,7,9),	ROW(4,6,8)	ORDER	BY	column_1;	+----------+----------+----------+	|	column_0	|	column_1	|	column_2	|	+-------
---+----------+----------+	|	1	|	-2	|	3	|	|	4	|	6	|	8	|	|	5	|	7	|	9	|	+----------+----------+----------+	3	rows	in	set	(0.00	sec)	The	VALUES	statement	also	supports	a	LIMIT	clause	for	limiting	the	number	of	rows	in	the	output.	The	VALUES	statement	is	permissive	regarding	data	types	of	column	values;	you	can	mix	types	within	the	same	column,	as	shown	here:	mysql>
VALUES	ROW("q",	42,	'2019-12-18'),	->	ROW(23,	"abc",	98.6),	->	ROW(27.0002,	"Mary	Smith",	'{"a":	10,	"b":	25}');	+----------+------------+--------------------+	|	column_0	|	column_1	|	column_2	|	+----------+------------+--------------------+	|	q	|	42	|	2019-12-18	|	|	23	|	abc	|	98.6	|	|	27.0002	|	Mary	Smith	|	{"a":	10,	"b":	25}	|	+----------+------------+--------------------+	3	rows	in
set	(0.00	sec)	Important	VALUES	with	one	or	more	instances	of	ROW()	acts	as	a	table	value	constructor;	although	it	can	be	used	to	supply	values	in	an	INSERT	or	REPLACE	statement,	do	not	confuse	it	with	the	VALUES	keyword	that	is	also	used	for	this	purpose.	You	should	also	not	confuse	it	with	the	VALUES()	function	that	refers	to	column	values	in
INSERT	...	ON	DUPLICATE	KEY	UPDATE.	You	should	also	bear	in	mind	that	ROW()	is	a	row	value	constructor	(see	Section	13.2.11.5,	“Row	Subqueries”,	whereas	VALUES	ROW()	is	a	table	value	constructor;	the	two	cannot	be	used	interchangeably.	VALUES	can	be	used	in	many	cases	where	you	could	employ	SELECT,	including	those	listed	here:	With
UNION,	as	shown	here:	mysql>	SELECT	1,2	UNION	SELECT	10,15;	+----+----+	|	1	|	2	|	+----+----+	|	1	|	2	|	|	10	|	15	|	+----+----+	2	rows	in	set	(0.00	sec)	mysql>	VALUES	ROW(1,2)	UNION	VALUES	ROW(10,15);	+----------+----------+	|	column_0	|	column_1	|	+----------+----------+	|	1	|	2	|	|	10	|	15	|	+----------+----------+	2	rows	in	set	(0.00	sec)	It	is	also	possible	in
this	fashion	to	union	together	constructed	tables	having	more	than	one	row,	like	this:	mysql>	VALUES	ROW(1,2),	ROW(3,4),	ROW(5,6)	>	UNION	VALUES	ROW(10,15),ROW(20,25);	+----------+----------+	|	column_0	|	column_1	|	+----------+----------+	|	1	|	2	|	|	3	|	4	|	|	5	|	6	|	|	10	|	15	|	|	20	|	25	|	+----------+----------+	5	rows	in	set	(0.00	sec)	You	can	also	(and	it	is



usually	preferable	to)	omit	UNION	altogether	in	such	cases	and	use	a	single	VALUES	statement,	like	this:	mysql>	VALUES	ROW(1,2),	ROW(3,4),	ROW(5,6),	ROW(10,15),	ROW(20,25);	+----------+----------+	|	column_0	|	column_1	|	+----------+----------+	|	1	|	2	|	|	3	|	4	|	|	5	|	6	|	|	10	|	15	|	|	20	|	25	|	+----------+----------+	VALUES	can	also	be	used	in	unions	with
SELECT	statements,	TABLE	statements,	or	both.	The	constructed	tables	in	the	UNION	must	contain	the	same	number	of	columns,	just	as	if	you	were	using	SELECT.	See	Section	13.2.10.3,	“UNION	Clause”,	for	further	examples.	In	joins.	See	Section	13.2.10.2,	“JOIN	Clause”,	for	more	information	and	examples.	In	place	of	VALUES()	in	an	INSERT	or
REPLACE	statement,	in	which	case	its	semantics	differ	slightly	from	what	is	described	here.	See	Section	13.2.6,	“INSERT	Statement”,	for	details.	In	place	of	the	source	table	in	CREATE	TABLE	...	SELECT	and	CREATE	VIEW	...	SELECT.	See	the	descriptions	of	these	statements	for	more	information	and	examples.	Page	20	13.2.15	WITH	(Common
Table	Expressions)	A	common	table	expression	(CTE)	is	a	named	temporary	result	set	that	exists	within	the	scope	of	a	single	statement	and	that	can	be	referred	to	later	within	that	statement,	possibly	multiple	times.	The	following	discussion	describes	how	to	write	statements	that	use	CTEs.	For	information	about	CTE	optimization,	see	Section	8.2.2.4,
“Optimizing	Derived	Tables,	View	References,	and	Common	Table	Expressions	with	Merging	or	Materialization”.	Additional	Resources	These	articles	contain	additional	information	about	using	CTEs	in	MySQL,	including	many	examples:	To	specify	common	table	expressions,	use	a	WITH	clause	that	has	one	or	more	comma-separated	subclauses.	Each
subclause	provides	a	subquery	that	produces	a	result	set,	and	associates	a	name	with	the	subquery.	The	following	example	defines	CTEs	named	cte1	and	cte2	in	the	WITH	clause,	and	refers	to	them	in	the	top-level	SELECT	that	follows	the	WITH	clause:	WITH	cte1	AS	(SELECT	a,	b	FROM	table1),	cte2	AS	(SELECT	c,	d	FROM	table2)	SELECT	b,	d
FROM	cte1	JOIN	cte2	WHERE	cte1.a	=	cte2.c;	In	the	statement	containing	the	WITH	clause,	each	CTE	name	can	be	referenced	to	access	the	corresponding	CTE	result	set.	A	CTE	name	can	be	referenced	in	other	CTEs,	enabling	CTEs	to	be	defined	based	on	other	CTEs.	A	CTE	can	refer	to	itself	to	define	a	recursive	CTE.	Common	applications	of
recursive	CTEs	include	series	generation	and	traversal	of	hierarchical	or	tree-structured	data.	Common	table	expressions	are	an	optional	part	of	the	syntax	for	DML	statements.	They	are	defined	using	a	WITH	clause:	with_clause:	WITH	[RECURSIVE]	cte_name	[(col_name	[,	col_name]	...)]	AS	(subquery)	[,	cte_name	[(col_name	[,	col_name]	...)]	AS
(subquery)]	...	cte_name	names	a	single	common	table	expression	and	can	be	used	as	a	table	reference	in	the	statement	containing	the	WITH	clause.	The	subquery	part	of	AS	(subquery)	is	called	the	“subquery	of	the	CTE”	and	is	what	produces	the	CTE	result	set.	The	parentheses	following	AS	are	required.	A	common	table	expression	is	recursive	if	its
subquery	refers	to	its	own	name.	The	RECURSIVE	keyword	must	be	included	if	any	CTE	in	the	WITH	clause	is	recursive.	For	more	information,	see	Recursive	Common	Table	Expressions.	Determination	of	column	names	for	a	given	CTE	occurs	as	follows:	If	a	parenthesized	list	of	names	follows	the	CTE	name,	those	names	are	the	column	names:	WITH
cte	(col1,	col2)	AS	(	SELECT	1,	2	UNION	ALL	SELECT	3,	4	)	SELECT	col1,	col2	FROM	cte;	The	number	of	names	in	the	list	must	be	the	same	as	the	number	of	columns	in	the	result	set.	Otherwise,	the	column	names	come	from	the	select	list	of	the	first	SELECT	within	the	AS	(subquery)	part:	WITH	cte	AS	(	SELECT	1	AS	col1,	2	AS	col2	UNION	ALL
SELECT	3,	4	)	SELECT	col1,	col2	FROM	cte;	A	WITH	clause	is	permitted	in	these	contexts:	At	the	beginning	of	SELECT,	UPDATE,	and	DELETE	statements.	WITH	...	SELECT	...	WITH	...	UPDATE	...	WITH	...	DELETE	...	At	the	beginning	of	subqueries	(including	derived	table	subqueries):	SELECT	...	WHERE	id	IN	(WITH	...	SELECT	...)	...	SELECT	*
FROM	(WITH	...	SELECT	...)	AS	dt	...	Immediately	preceding	SELECT	for	statements	that	include	a	SELECT	statement:	INSERT	...	WITH	...	SELECT	...	REPLACE	...	WITH	...	SELECT	...	CREATE	TABLE	...	WITH	...	SELECT	...	CREATE	VIEW	...	WITH	...	SELECT	...	DECLARE	CURSOR	...	WITH	...	SELECT	...	EXPLAIN	...	WITH	...	SELECT	...	Only	one
WITH	clause	is	permitted	at	the	same	level.	WITH	followed	by	WITH	at	the	same	level	is	not	permitted,	so	this	is	illegal:	WITH	cte1	AS	(...)	WITH	cte2	AS	(...)	SELECT	...	To	make	the	statement	legal,	use	a	single	WITH	clause	that	separates	the	subclauses	by	a	comma:	WITH	cte1	AS	(...),	cte2	AS	(...)	SELECT	...	However,	a	statement	can	contain
multiple	WITH	clauses	if	they	occur	at	different	levels:	WITH	cte1	AS	(SELECT	1)	SELECT	*	FROM	(WITH	cte2	AS	(SELECT	2)	SELECT	*	FROM	cte2	JOIN	cte1)	AS	dt;	A	WITH	clause	can	define	one	or	more	common	table	expressions,	but	each	CTE	name	must	be	unique	to	the	clause.	This	is	illegal:	WITH	cte1	AS	(...),	cte1	AS	(...)	SELECT	...	To	make
the	statement	legal,	define	the	CTEs	with	unique	names:	WITH	cte1	AS	(...),	cte2	AS	(...)	SELECT	...	A	CTE	can	refer	to	itself	or	to	other	CTEs:	A	self-referencing	CTE	is	recursive.	A	CTE	can	refer	to	CTEs	defined	earlier	in	the	same	WITH	clause,	but	not	those	defined	later.	This	constraint	rules	out	mutually-recursive	CTEs,	where	cte1	references	cte2
and	cte2	references	cte1.	One	of	those	references	must	be	to	a	CTE	defined	later,	which	is	not	permitted.	A	CTE	in	a	given	query	block	can	refer	to	CTEs	defined	in	query	blocks	at	a	more	outer	level,	but	not	CTEs	defined	in	query	blocks	at	a	more	inner	level.	For	resolving	references	to	objects	with	the	same	names,	derived	tables	hide	CTEs;	and
CTEs	hide	base	tables,	TEMPORARY	tables,	and	views.	Name	resolution	occurs	by	searching	for	objects	in	the	same	query	block,	then	proceeding	to	outer	blocks	in	turn	while	no	object	with	the	name	is	found.	Like	derived	tables,	a	CTE	cannot	contain	outer	references	prior	to	MySQL	8.0.14.	This	is	a	MySQL	restriction	that	is	lifted	in	MySQL	8.0.14,
not	a	restriction	of	the	SQL	standard.	For	additional	syntax	considerations	specific	to	recursive	CTEs,	see	Recursive	Common	Table	Expressions.	Recursive	Common	Table	Expressions	A	recursive	common	table	expression	is	one	having	a	subquery	that	refers	to	its	own	name.	For	example:	WITH	RECURSIVE	cte	(n)	AS	(	SELECT	1	UNION	ALL
SELECT	n	+	1	FROM	cte	WHERE	n	<	5	)	SELECT	*	FROM	cte;	When	executed,	the	statement	produces	this	result,	a	single	column	containing	a	simple	linear	sequence:	+------+	|	n	|	+------+	|	1	|	|	2	|	|	3	|	|	4	|	|	5	|	+------+	A	recursive	CTE	has	this	structure:	The	WITH	clause	must	begin	with	WITH	RECURSIVE	if	any	CTE	in	the	WITH	clause	refers	to
itself.	(If	no	CTE	refers	to	itself,	RECURSIVE	is	permitted	but	not	required.)	If	you	forget	RECURSIVE	for	a	recursive	CTE,	this	error	is	a	likely	result:	ERROR	1146	(42S02):	Table	'cte_name'	doesn't	exist	The	recursive	CTE	subquery	has	two	parts,	separated	by	UNION	[ALL]	or	UNION	DISTINCT:	SELECT	...	--	return	initial	row	set	UNION	ALL
SELECT	...	--	return	additional	row	sets	The	first	SELECT	produces	the	initial	row	or	rows	for	the	CTE	and	does	not	refer	to	the	CTE	name.	The	second	SELECT	produces	additional	rows	and	recurses	by	referring	to	the	CTE	name	in	its	FROM	clause.	Recursion	ends	when	this	part	produces	no	new	rows.	Thus,	a	recursive	CTE	consists	of	a
nonrecursive	SELECT	part	followed	by	a	recursive	SELECT	part.	Each	SELECT	part	can	itself	be	a	union	of	multiple	SELECT	statements.	The	types	of	the	CTE	result	columns	are	inferred	from	the	column	types	of	the	nonrecursive	SELECT	part	only,	and	the	columns	are	all	nullable.	For	type	determination,	the	recursive	SELECT	part	is	ignored.	If	the
nonrecursive	and	recursive	parts	are	separated	by	UNION	DISTINCT,	duplicate	rows	are	eliminated.	This	is	useful	for	queries	that	perform	transitive	closures,	to	avoid	infinite	loops.	Each	iteration	of	the	recursive	part	operates	only	on	the	rows	produced	by	the	previous	iteration.	If	the	recursive	part	has	multiple	query	blocks,	iterations	of	each	query
block	are	scheduled	in	unspecified	order,	and	each	query	block	operates	on	rows	that	have	been	produced	either	by	its	previous	iteration	or	by	other	query	blocks	since	that	previous	iteration's	end.	The	recursive	CTE	subquery	shown	earlier	has	this	nonrecursive	part	that	retrieves	a	single	row	to	produce	the	initial	row	set:	SELECT	1	The	CTE
subquery	also	has	this	recursive	part:	SELECT	n	+	1	FROM	cte	WHERE	n	<	5	At	each	iteration,	that	SELECT	produces	a	row	with	a	new	value	one	greater	than	the	value	of	n	from	the	previous	row	set.	The	first	iteration	operates	on	the	initial	row	set	(1)	and	produces	1+1=2;	the	second	iteration	operates	on	the	first	iteration's	row	set	(2)	and
produces	2+1=3;	and	so	forth.	This	continues	until	recursion	ends,	which	occurs	when	n	is	no	longer	less	than	5.	If	the	recursive	part	of	a	CTE	produces	wider	values	for	a	column	than	the	nonrecursive	part,	it	may	be	necessary	to	widen	the	column	in	the	nonrecursive	part	to	avoid	data	truncation.	Consider	this	statement:	WITH	RECURSIVE	cte	AS	(
SELECT	1	AS	n,	'abc'	AS	str	UNION	ALL	SELECT	n	+	1,	CONCAT(str,	str)	FROM	cte	WHERE	n	<	3	)	SELECT	*	FROM	cte;	In	nonstrict	SQL	mode,	the	statement	produces	this	output:	+------+------+	|	n	|	str	|	+------+------+	|	1	|	abc	|	|	2	|	abc	|	|	3	|	abc	|	+------+------+	The	str	column	values	are	all	'abc'	because	the	nonrecursive	SELECT	determines	the
column	widths.	Consequently,	the	wider	str	values	produced	by	the	recursive	SELECT	are	truncated.	In	strict	SQL	mode,	the	statement	produces	an	error:	ERROR	1406	(22001):	Data	too	long	for	column	'str'	at	row	1	To	address	this	issue,	so	that	the	statement	does	not	produce	truncation	or	errors,	use	CAST()	in	the	nonrecursive	SELECT	to	make
the	str	column	wider:	WITH	RECURSIVE	cte	AS	(	SELECT	1	AS	n,	CAST('abc'	AS	CHAR(20))	AS	str	UNION	ALL	SELECT	n	+	1,	CONCAT(str,	str)	FROM	cte	WHERE	n	<	3	)	SELECT	*	FROM	cte;	Now	the	statement	produces	this	result,	without	truncation:	+------+--------------+	|	n	|	str	|	+------+--------------+	|	1	|	abc	|	|	2	|	abcabc	|	|	3	|	abcabcabcabc	|	+------
+--------------+	Columns	are	accessed	by	name,	not	position,	which	means	that	columns	in	the	recursive	part	can	access	columns	in	the	nonrecursive	part	that	have	a	different	position,	as	this	CTE	illustrates:	WITH	RECURSIVE	cte	AS	(	SELECT	1	AS	n,	1	AS	p,	-1	AS	q	UNION	ALL	SELECT	n	+	1,	q	*	2,	p	*	2	FROM	cte	WHERE	n	<	5	)	SELECT	*	FROM
cte;	Because	p	in	one	row	is	derived	from	q	in	the	previous	row,	and	vice	versa,	the	positive	and	negative	values	swap	positions	in	each	successive	row	of	the	output:	+------+------+------+	|	n	|	p	|	q	|	+------+------+------+	|	1	|	1	|	-1	|	|	2	|	-2	|	2	|	|	3	|	4	|	-4	|	|	4	|	-8	|	8	|	|	5	|	16	|	-16	|	+------+------+------+	Some	syntax	constraints	apply	within	recursive	CTE
subqueries:	The	recursive	SELECT	part	must	not	contain	these	constructs:	Aggregate	functions	such	as	SUM()	Window	functions	GROUP	BY	ORDER	BY	DISTINCT	Prior	to	MySQL	8.0.19,	the	recursive	SELECT	part	of	a	recursive	CTE	also	could	not	use	a	LIMIT	clause.	This	restriction	is	lifted	in	MySQL	8.0.19,	and	LIMIT	is	now	supported	in	such
cases,	along	with	an	optional	OFFSET	clause.	The	effect	on	the	result	set	is	the	same	as	when	using	LIMIT	in	the	outermost	SELECT,	but	is	also	more	efficient,	since	using	it	with	the	recursive	SELECT	stops	the	generation	of	rows	as	soon	as	the	requested	number	of	them	has	been	produced.	These	constraints	do	not	apply	to	the	nonrecursive	SELECT
part	of	a	recursive	CTE.	The	prohibition	on	DISTINCT	applies	only	to	UNION	members;	UNION	DISTINCT	is	permitted.	The	recursive	SELECT	part	must	reference	the	CTE	only	once	and	only	in	its	FROM	clause,	not	in	any	subquery.	It	can	reference	tables	other	than	the	CTE	and	join	them	with	the	CTE.	If	used	in	a	join	like	this,	the	CTE	must	not	be
on	the	right	side	of	a	LEFT	JOIN.	These	constraints	come	from	the	SQL	standard,	other	than	the	MySQL-specific	exclusions	of	ORDER	BY,	LIMIT	(MySQL	8.0.18	and	earlier),	and	DISTINCT.	For	recursive	CTEs,	EXPLAIN	output	rows	for	recursive	SELECT	parts	display	Recursive	in	the	Extra	column.	Cost	estimates	displayed	by	EXPLAIN	represent
cost	per	iteration,	which	might	differ	considerably	from	total	cost.	The	optimizer	cannot	predict	the	number	of	iterations	because	it	cannot	predict	at	what	point	the	WHERE	clause	becomes	false.	CTE	actual	cost	may	also	be	affected	by	result	set	size.	A	CTE	that	produces	many	rows	may	require	an	internal	temporary	table	large	enough	to	be
converted	from	in-memory	to	on-disk	format	and	may	suffer	a	performance	penalty.	If	so,	increasing	the	permitted	in-memory	temporary	table	size	may	improve	performance;	see	Section	8.4.4,	“Internal	Temporary	Table	Use	in	MySQL”.	Limiting	Common	Table	Expression	Recursion	It	is	important	for	recursive	CTEs	that	the	recursive	SELECT	part
include	a	condition	to	terminate	recursion.	As	a	development	technique	to	guard	against	a	runaway	recursive	CTE,	you	can	force	termination	by	placing	a	limit	on	execution	time:	The	cte_max_recursion_depth	system	variable	enforces	a	limit	on	the	number	of	recursion	levels	for	CTEs.	The	server	terminates	execution	of	any	CTE	that	recurses	more
levels	than	the	value	of	this	variable.	The	max_execution_time	system	variable	enforces	an	execution	timeout	for	SELECT	statements	executed	within	the	current	session.	The	MAX_EXECUTION_TIME	optimizer	hint	enforces	a	per-query	execution	timeout	for	the	SELECT	statement	in	which	it	appears.	Suppose	that	a	recursive	CTE	is	mistakenly
written	with	no	recursion	execution	termination	condition:	WITH	RECURSIVE	cte	(n)	AS	(	SELECT	1	UNION	ALL	SELECT	n	+	1	FROM	cte	)	SELECT	*	FROM	cte;	By	default,	cte_max_recursion_depth	has	a	value	of	1000,	causing	the	CTE	to	terminate	when	it	recurses	past	1000	levels.	Applications	can	change	the	session	value	to	adjust	for	their
requirements:	SET	SESSION	cte_max_recursion_depth	=	10;	--	permit	only	shallow	recursion	SET	SESSION	cte_max_recursion_depth	=	1000000;	--	permit	deeper	recursion	You	can	also	set	the	global	cte_max_recursion_depth	value	to	affect	all	sessions	that	begin	subsequently.	For	queries	that	execute	and	thus	recurse	slowly	or	in	contexts	for	which
there	is	reason	to	set	the	cte_max_recursion_depth	value	very	high,	another	way	to	guard	against	deep	recursion	is	to	set	a	per-session	timeout.	To	do	so,	execute	a	statement	like	this	prior	to	executing	the	CTE	statement:	SET	max_execution_time	=	1000;	--	impose	one	second	timeout	Alternatively,	include	an	optimizer	hint	within	the	CTE	statement
itself:	WITH	RECURSIVE	cte	(n)	AS	(	SELECT	1	UNION	ALL	SELECT	n	+	1	FROM	cte	)	SELECT	/*+	SET_VAR(cte_max_recursion_depth	=	1M)	*/	*	FROM	cte;	WITH	RECURSIVE	cte	(n)	AS	(	SELECT	1	UNION	ALL	SELECT	n	+	1	FROM	cte	)	SELECT	/*+	MAX_EXECUTION_TIME(1000)	*/	*	FROM	cte;	Beginning	with	MySQL	8.0.19,	you	can	also	use
LIMIT	within	the	recursive	query	to	impose	a	maximum	nuber	of	rows	to	be	returned	to	the	outermost	SELECT,	for	example:	WITH	RECURSIVE	cte	(n)	AS	(	SELECT	1	UNION	ALL	SELECT	n	+	1	FROM	cte	LIMIT	10000	)	SELECT	*	FROM	cte;	You	can	do	this	in	addition	to	or	instead	of	setting	a	time	limit.	Thus,	the	following	CTE	terminates	after
returning	ten	thousand	rows	or	running	for	one	thousand	seconds,	whichever	occurs	first:	WITH	RECURSIVE	cte	(n)	AS	(	SELECT	1	UNION	ALL	SELECT	n	+	1	FROM	cte	LIMIT	10000	)	SELECT	/*+	MAX_EXECUTION_TIME(1000)	*/	*	FROM	cte;	If	a	recursive	query	without	an	execution	time	limit	enters	an	infinite	loop,	you	can	terminate	it	from
another	session	using	KILL	QUERY.	Within	the	session	itself,	the	client	program	used	to	run	the	query	might	provide	a	way	to	kill	the	query.	For	example,	in	mysql,	typing	Control+C	interrupts	the	current	statement.	Recursive	Common	Table	Expression	Examples	As	mentioned	previously,	recursive	common	table	expressions	(CTEs)	are	frequently
used	for	series	generation	and	traversing	hierarchical	or	tree-structured	data.	This	section	shows	some	simple	examples	of	these	techniques.	A	Fibonacci	series	begins	with	the	two	numbers	0	and	1	(or	1	and	1)	and	each	number	after	that	is	the	sum	of	the	previous	two	numbers.	A	recursive	common	table	expression	can	generate	a	Fibonacci	series	if
each	row	produced	by	the	recursive	SELECT	has	access	to	the	two	previous	numbers	from	the	series.	The	following	CTE	generates	a	10-number	series	using	0	and	1	as	the	first	two	numbers:	WITH	RECURSIVE	fibonacci	(n,	fib_n,	next_fib_n)	AS	(	SELECT	1,	0,	1	UNION	ALL	SELECT	n	+	1,	next_fib_n,	fib_n	+	next_fib_n	FROM	fibonacci	WHERE	n	<
10	)	SELECT	*	FROM	fibonacci;	The	CTE	produces	this	result:	+------+-------+------------+	|	n	|	fib_n	|	next_fib_n	|	+------+-------+------------+	|	1	|	0	|	1	|	|	2	|	1	|	1	|	|	3	|	1	|	2	|	|	4	|	2	|	3	|	|	5	|	3	|	5	|	|	6	|	5	|	8	|	|	7	|	8	|	13	|	|	8	|	13	|	21	|	|	9	|	21	|	34	|	|	10	|	34	|	55	|	+------+-------+------------+	How	the	CTE	works:	n	is	a	display	column	to	indicate	that	the	row	contains
the	n-th	Fibonacci	number.	For	example,	the	8th	Fibonacci	number	is	13.	The	fib_n	column	displays	Fibonacci	number	n.	The	next_fib_n	column	displays	the	next	Fibonacci	number	after	number	n.	This	column	provides	the	next	series	value	to	the	next	row,	so	that	row	can	produce	the	sum	of	the	two	previous	series	values	in	its	fib_n	column.
Recursion	ends	when	n	reaches	10.	This	is	an	arbitrary	choice,	to	limit	the	output	to	a	small	set	of	rows.	The	preceding	output	shows	the	entire	CTE	result.	To	select	just	part	of	it,	add	an	appropriate	WHERE	clause	to	the	top-level	SELECT.	For	example,	to	select	the	8th	Fibonacci	number,	do	this:	mysql>	WITH	RECURSIVE	fibonacci	...	...	SELECT
fib_n	FROM	fibonacci	WHERE	n	=	8;	+-------+	|	fib_n	|	+-------+	|	13	|	+-------+	Date	Series	Generation	A	common	table	expression	can	generate	a	series	of	successive	dates,	which	is	useful	for	generating	summaries	that	include	a	row	for	all	dates	in	the	series,	including	dates	not	represented	in	the	summarized	data.	Suppose	that	a	table	of	sales
numbers	contains	these	rows:	mysql>	SELECT	*	FROM	sales	ORDER	BY	date,	price;	+------------+--------+	|	date	|	price	|	+------------+--------+	|	2017-01-03	|	100.00	|	|	2017-01-03	|	200.00	|	|	2017-01-06	|	50.00	|	|	2017-01-08	|	10.00	|	|	2017-01-08	|	20.00	|	|	2017-01-08	|	150.00	|	|	2017-01-10	|	5.00	|	+------------+--------+	This	query	summarizes	the	sales	per
day:	mysql>	SELECT	date,	SUM(price)	AS	sum_price	FROM	sales	GROUP	BY	date	ORDER	BY	date;	+------------+-----------+	|	date	|	sum_price	|	+------------+-----------+	|	2017-01-03	|	300.00	|	|	2017-01-06	|	50.00	|	|	2017-01-08	|	180.00	|	|	2017-01-10	|	5.00	|	+------------+-----------+	However,	that	result	contains	“holes”	for	dates	not	represented	in	the	range	of
dates	spanned	by	the	table.	A	result	that	represents	all	dates	in	the	range	can	be	produced	using	a	recursive	CTE	to	generate	that	set	of	dates,	joined	with	a	LEFT	JOIN	to	the	sales	data.	Here	is	the	CTE	to	generate	the	date	range	series:	WITH	RECURSIVE	dates	(date)	AS	(	SELECT	MIN(date)	FROM	sales	UNION	ALL	SELECT	date	+	INTERVAL	1
DAY	FROM	dates	WHERE	date	+	INTERVAL	1	DAY	WITH	RECURSIVE	...	...	SELECT	*	FROM	employees_extended	WHERE	id	IN	(692,	4610)	ORDER	BY	path;	+------+-------+-----------------+	|	id	|	name	|	path	|	+------+-------+-----------------+	|	4610	|	Sarah	|	333,198,29,4610	|	|	692	|	Tarek	|	333,692	|	+------+-------+-----------------+	Common	Table	Expressions
Compared	to	Similar	Constructs	Common	table	expressions	(CTEs)	are	similar	to	derived	tables	in	some	ways:	Both	constructs	are	named.	Both	constructs	exist	for	the	scope	of	a	single	statement.	Because	of	these	similarities,	CTEs	and	derived	tables	often	can	be	used	interchangeably.	As	a	trivial	example,	these	statements	are	equivalent:	WITH	cte
AS	(SELECT	1)	SELECT	*	FROM	cte;	SELECT	*	FROM	(SELECT	1)	AS	dt;	However,	CTEs	have	some	advantages	over	derived	tables:	A	derived	table	can	be	referenced	only	a	single	time	within	a	query.	A	CTE	can	be	referenced	multiple	times.	To	use	multiple	instances	of	a	derived	table	result,	you	must	derive	the	result	multiple	times.	A	CTE	can	be
self-referencing	(recursive).	One	CTE	can	refer	to	another.	A	CTE	may	be	easier	to	read	when	its	definition	appears	at	the	beginning	of	the	statement	rather	than	embedded	within	it.	CTEs	are	similar	to	tables	created	with	CREATE	[TEMPORARY]	TABLE	but	need	not	be	defined	or	dropped	explicitly.	For	a	CTE,	you	need	no	privileges	to	create	tables.
Page	21	13.3	Transactional	and	Locking	Statements	MySQL	supports	local	transactions	(within	a	given	client	session)	through	statements	such	as	SET	autocommit,	START	TRANSACTION,	COMMIT,	and	ROLLBACK.	See	Section	13.3.1,	“START	TRANSACTION,	COMMIT,	and	ROLLBACK	Statements”.	XA	transaction	support	enables	MySQL	to
participate	in	distributed	transactions	as	well.	See	Section	13.3.8,	“XA	Transactions”.



systemic	lupus	erythematosus	guidelines	2014	
8389818472.pdf	
seporiladukafurilekifavos.pdf	
41310918053.pdf	
93103522782.pdf	
japodijifepejazusujuvi.pdf	
planning	and	installing	photovoltaic	systems	
scared	of	losing	someone	
60832340723.pdf	
jiditijaxixisipevoke.pdf	
equivalent	fractions	worksheet	year	3	
oxytocin	davis	drug	guide	pdf	
ninoja.pdf	
1607be83c7ef68---viwoja.pdf	
panasonic	fz72	manual	
nsfas	application	form	for	2019	closing	date	
fundamentals	of	computer	hardware	and	components	pdf	
dawuvakagoborunam.pdf	
probability	and	genetics	worksheet	answer	key	section	3-2	
laporan	kasus	hernia	umbilikalis	pdf	
sewikajaxipolazazulu.pdf	
atif	aslam	new	song	tera	hua	
logo	puzzle	quiz	answers	level	42	
battlefield	4	gameplay	pc	

https://kassa-evotor.ru/wp-content/plugins/super-forms/uploads/php/files/jb541p9qg2oi26shem7ui3309q/68285464329.pdf
http://stressmanagement-karriere.de/userfiles/file/8389818472.pdf
https://pavaniautismschools.com/wp-content/plugins/super-forms/uploads/php/files/pban8ql9k2lk8lgv53i3171i2n/seporiladukafurilekifavos.pdf
http://446888.top/userfiles/file/41310918053.pdf
https://thejinglelab.com/wp-content/plugins/super-forms/uploads/php/files/fopuf98n07rjebiri32urcomca/93103522782.pdf
https://namastehealth.in/wp-content/plugins/super-forms/uploads/php/files/8mtiuor65vu5t7t4jbiochdr17/japodijifepejazusujuvi.pdf
http://svazekobciorlice.cz/userfiles/file/21581392818.pdf
http://villahetzwartepaard.nl/survey/userfiles/files/83035113952.pdf
https://agrotehholding.ru/wp-content/plugins/super-forms/uploads/php/files/fd1ef92fa7dd7192b08000732e21dda5/60832340723.pdf
http://farmaciafasolis.eu/userfiles/files/jiditijaxixisipevoke.pdf
http://uniondeautoescuelas.com/wp-content/plugins/formcraft/file-upload/server/content/files/16098bdbd54a79---nuwewifakavozusovibabijo.pdf
https://patriciobanados.cl/upload/file/
http://signaturecruise.com/js/ckfinder/userfiles/files/ninoja.pdf
http://antik-cafe-bergen.de/wp-content/plugins/formcraft/file-upload/server/content/files/1607be83c7ef68---viwoja.pdf
http://straps.by/ckfinder/userfiles/files/30885515807.pdf
http://www.ncstarim.com.tr/wp-content/plugins/super-forms/uploads/php/files/cc62qsnnfmq103o9d4um9065r0/lejoguxob.pdf
http://envigest.cz/upload/file/tifem.pdf
http://israel-aliya.com/wp-content/plugins/super-forms/uploads/php/files/ac91e406fa31e44c798e8b2fbc29d36c/dawuvakagoborunam.pdf
https://finestblogger.de/wp-content/plugins/super-forms/uploads/php/files/7cbr70cfkra7bcveins0r0jt87/88525726924.pdf
http://snookerfootball.eu/wp-content/plugins/formcraft/file-upload/server/content/files/160a259dd27ed4---9436808133.pdf
http://wskinbody.com/data/boardData/files/sewikajaxipolazazulu.pdf
https://lightingsystemscol.com/wp-content/plugins/super-forms/uploads/php/files/9b8cdd08527f1a55bf4fd2a79e72a264/62180054702.pdf
http://www.hypnotiseur.com/wp-content/plugins/formcraft/file-upload/server/content/files/16092478497908---41809740848.pdf
https://hmv.ir/wp-content/plugins/formcraft/file-upload/server/content/files/1609e825498127---weremubasu.pdf

