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Simple	Harmonic	Motion	is	a	fundament	concept	in	the	study	of	motion,	especially	oscillatory	motion;	which	helps	us	understand	many	physical	phenomena	around	like	how	strings	produce	pleasing	sounds	in	a	musical	instrument	such	as	the	sitar,	guitar,	violin,	etc.,	and	also,	how	vibrations	in	the	membrane	in	drums	and	diaphragms	in	telephone	and
speaker	system	creates	the	precise	sound.	Understanding	Simple	Harmonic	Motion	is	key	to	understanding	these	phenomena.		In	this	article,	we	will	grasp	the	concept	of	Simple	Harmonic	Motion	(SHM),	its	examples	in	real	life,	the	equation,	and	how	it	is	different	from	periodic	motion.	Simple	Harmonic	Motion	Definition	(SHM	Definition)Simple
harmonic	motion	is	an	oscillatory	motion	in	which	the	acceleration	of	particle	at	any	position	is	directly	proportional	to	its	displacement	from	the	mean	position.		As	SHM	is	an	example	of	Oscillatory	Motion.	Simple	Harmonic	Motions	(SHM)	are	all	oscillatory	and	periodic,	but	not	all	Oscillatory	or	Periodic	motions	are	SHM.	Oscillatory	motion	is	also
referred	to	as	Harmonic	Motion	and	out	of	all	Harmonic	Motions,	the	most	important	one	to	study	is	Simple	Harmonic	Motion	(SHM).	Some	characteristics	of	SHM	are	as	follows:	SHM	is	a	type	of	Periodic	and	Oscillatory	Motion.There	is	always	a	restoring	force	acting	on	an	object	in	SHM,	which	always	acts	in	the	opposite	direction	to	the
displacement	of	the	object	from	the	mean	position.The	amplitude	in	the	SHM	remains	constant	throughout	the	motion	of	the	object.The	acceleration	of	the	object	is	directly	proportional	to	the	displacement	of	the	object	from	its	mean	position.The	velocity	of	the	object	is	maximum	at	the	equilibrium	position.The	total	energy	in	SHM	remains	conserved,
as	there	is	always	a	conversion	of	kinetic	and	potential	energy	happening	throughout	the	motion.Examples	of	Simple	Harmonic	Motion(SHM)There	are	a	lot	of	examples	of	Simple	Harmonic	Motion	around	us,	we	just	need	to	see	them	from	the	perspective	of	SHM.	From	swings	in	the	park	to	the	motion	of	the	cantilever,	all	are	examples	of	SHM.	The
following	illustration	shows	different	examples	of	Simple	Harmonic	Motion.	There	are	various	terminologies	related	to	SHM	(Simple	Harmonic	Motion)	some	of	which	are	explained	as	follows:	Mean	PositionIn	Simple	Harmonic	Motion,	the	position	of	the	object	where	there	is	no	restoring	force	acting	on	it	is	the	mean	position.	In	other	words,	the
point	about	which	the	object	moves	between	its	extreme	position	is	called	the	mean	position	of	the	object.	The	mean	position	is	sometimes	referred	to	as	Equilibrium	Position	as	well.	AmplitudeThe	amplitude	of	a	particle	in	SHM	is	its	maximum	displacement	from	its	equilibrium	or	mean	position,	and	as	displacement	is	a	vector	quantity,	its	direction	is
always	away	from	the	mean	or	equilibrium	position.	The	SI	unit	of	amplitude	is	the	meter	and	all	the	other	units	of	length	can	also	be	used	for	this.	FrequencyThe	frequency	of	SHM	is	the	number	of	oscillations	performed	by	a	particle	per	unit	of	time.	SI	unit	of	frequency	is	Hertz	or	r.p.s.	(rotations	per	second),	and	is	given	by:	f	=	1/	T	ω	=	2πf	=	2π/T	
Time	PeriodFor	a	particle	performing	SHM,	the	time	period	is	the	amount	of	time	it	takes	to	complete	one	complete	oscillation.	As	a	result,	the	time	period	or	simply	period	of	SHM	is	the	shortest	time	before	the	motion	repeats	itself.	T	=	2π/ω			where	ω	is	the	Angular	frequency	and	T	is	the	Time	period.	PhaseThe	phase	of	SHM	represents	the
magnitude	and	direction	of	particle	displacement	at	any	instant	of	the	motion	which	is	its	state	of	oscillation.	The	expression	for	a	particle's	position	as	a	function	of	time	and	angular	frequency	is	as	follows:	x	=	A	sin	(ωt	+	ϕ)	where	(ωt	+	ϕ)	is	the	phase	of	particle.	Phase	DifferenceFor	two	particles	performing	SHM,	the	phase	difference	is	defined	as
the	difference	between	the	total	phase	angles	of	those	particles.	Phase	Difference	is	denoted	by	Δϕ.	Mathematically	the	phase	difference	is	defined	as	the	difference	between	the	total	phase	angles	of	two	particles	moving	in	simple	harmonic	motion	with	respect	to	the	mean	position.		For	example,	for	two	particles	performing	SHM	with	the	same
angular	frequency	with	displacement	functions,	x1	=	A	sin	(ωt	+	ϕ1)	and	x2	=	A	sin	(ωt	+	ϕ2).	The	phase	difference	is	given	by		Δϕ	=		ϕ1	-	ϕ2	When	two	vibrating	particles	with	the	same	angular	frequency,	are	in	the	same	phases	if	the	phase	difference	between	them	is	an	even	multiple	of	π	i.e.,	Δϕ	=	nπ	Where,	n	=	0,	1,	2,	3,	4,	.	.	.		Two	vibrating
particles	with	the	same	angular	frequency,	are	said	to	be	in	opposite	phases	if	the	phase	difference	between	them	is	an	odd	multiple	of	π	i.e.,	Δϕ	=	(2n	+	1)π		Where,	n	=	0,	1,	2,	3,	4,	.	.	.		Types	of	Simple	Harmonic	Motion	(SHM)There	are	two	types	of	SHM,	which	is:		Linear	Simple	Harmonic	MotionAngular	Simple	Harmonic	MotionLinear	Simple
Harmonic	MotionWhen	a	particle	moves	back	and	forth	along	a	straight	line	around	a	fixed	point	(called	the	equilibrium	position),	this	is	referred	to	as	Linear	Simple	Harmonic	Motion.	Some	examples	of	Linear	SHM	include	the	oscillation	of	a	liquid	column	U-tube,	the	motion	of	a	simple	pendulum	with	very	small	displacements,	and	the	vertical	small
vibration	of	a	mass	carried	by	elastic	string.	Conditions	for	Linear	Simple	Harmonic	MotionThe	restoring	force	or	acceleration	acting	on	the	particle	must	always	be	proportional	to	the	particle's	displacement	and	directed	toward	the	equilibrium	position.	F	∝	-	X	a	∝	-x	where		F	is	the	Restoring	ForceX	is	the	Displacement	of	Particle	from	Equilibrium
Positiona	is	the	AccelerationAngular	Simple	Harmonic	MotionAn	angular	simple	harmonic	motion	occurs	when	a	system	oscillates	angularly	with	respect	to	a	fixed	axis.	The	displacement	of	the	particle	in	angular	simple	harmonic	motion	is	measured	in	terms	of	angular	displacement.	The	torsional	pendulum	is	one	example	of	Angular	SHM.	Conditions
for	Angular	Simple	Harmonic	MotionThe	restoring	torque	(or)	angular	acceleration	acting	on	the	particle	should	always	be	proportional	to	the	particle's	angular	displacement	and	oriented	towards	the	equilibrium	position.	T	∝	-θ		α	∝	-θ	where		T	is	Torqueθ	is	the	Angular	Displacementα	is	the	Angular	AccelerationDifference	between	Linear	SHM	and
Angular	SHMThere	are	some	key	differences	between	Linear	and	Angular	SHM,	some	of	which	is	as	follows:	In	Linear	SHM,	the	particle	moves	back	and	forth	along	a	straight	line	with	constant	amplitude	and	frequency.In	angular	SHM,	the	particle	moves	in	a	circular	path	around	an	axis	with	a	constant	amplitude	and	frequency.Restoring	Force	is
directly	proportional	to	the	linear	displacement.Restoring	torque	is	directly	proportional	to	the	angular	displacement.Some	examples	of	Linear	SHM	include	a	spring-mass	system,	a	piston	in	the	automobile,	etc.Some	examples	of	Angular	SHM	include	the	motion	of	a	pendulum,	a	rotating	fan,	or	a	balance	wheel	in	a	watch.Equations	for	Simple
Harmonic	MotionLet's	consider	a	particle	of	mass	(m)	doing	Simple	Harmonic	Motion	along	a	path	A'OA	the	mean	position	is	O.	Let	the	speed	of	the	particle	be	V0	when	it	is	at	position	P	(at	some	distance	from	point	O)	At	the	time,	t	=	0	the	particle	at	P	(moving	towards	point	A)	At	the	time,	t	=	t	the	particle	is	at	Q	(at	a	distance	X	from	point	O)	at
this	point	if	velocity	is	V	then:	The	force	F	acting	on	a	particle	at	point	p	is	given	as,	F	=	-K	X	[where,	K	=	positive	constant]	We	know	that,	F	=	m	a																																												[where,	a	=	Acceleration	at	Q]	⇒	m	a	=	-K	x	⇒	a	=	-(K/m)	x	As	K/m	=	ω2		Thus,	a	=	-ω2x	Also,	we	know	a	=	d2X/d2t]		Therefore,	d2x/d2t		=		-ω2x		d2x/d2t	+	ω2x	=	0	which	is	the
differential	equation	for	linear	simple	harmonic	motion.	Solutions	of	Differential	Equations	of	SHMThe	solutions	to	the	differential	equation	for	simple	harmonic	motion	are	as	follows:	Equation	of	SHM	is,	d2x/d2t	+	ω2x	=	0	Multiply	by	2	\frac{dx}{dt},	to	get	2	\frac{dx}{dt}\cdot	\frac{d^2x}{dt^2}+2	\omega^2	x	\frac{dx}{dt}=0	\Rightarrow
\frac{d}{dt}\left(\left(\frac{dx}{dt}\right)^2+\omega^2	x^2\right)=0	After	integration,	we	get	a	separable	equation	\left(\frac{dx}{dt}\right)^2+\omega^2	x^2=C^2,	\Rightarrow	\frac{dx}{\sqrt{A^2-x^2}	\cdot	dt}=\omega		\Rightarrow	\frac{dx}{\sqrt{A^2-x^2}}=\omega	dt	Integrating,	\sin^{-1}\left(\frac{x}{A}\right)=\omega	t+\phi
\Rightarrow	\frac{x}{A}	=	\sin	(\omega	t+\phi)	\bold{\Rightarrow	x=	A\sin	(\omega	t+\phi)}	This	is	the	required	Solution	of	the	SHM	Equation.	Different	Cases	of	the	Solution	of	SHM	EquationFor	particle	is	in	its	mean	position	at	point	(O)	[ϕ	=0],	displacement	function	becomes		x	=	Asinωt.	For	t	=	0,	when	object	is	at	rest,	displacement	function
becomes	x	=	Asinϕ	For	particle	in	any	position	throughout	the	SHM	(any	time	t),	displacement	function	becomes	x	=	Asin(ωt+ϕ)	Energy	in	Simple	Harmonic	Motion	(SHM)A	system	performing	SHM	is	called	a	Harmonic	Oscillator.	The	energy	of	the	particle	performing	the	SHM	is	discussed	below	in	the	particle.	Let's	take	a	particle	of	mass	(m)
performing	linear	SHM	with	angular	frequency	(ω)	and	the	amplitude	of	the	particle	is	(A)	Now	we	know	that	the	displacement	of	the	particle	at	any	time	is	given	using	the	SHM	equation,	x	=	A	sin	(ωt	+	Φ)...(i)	where	Φ	is	the	phase	difference.	Differentiating	eq(i)	wrt	time	we	get,	v	=	Aω.cos	(ωt	+	Φ)	v	=	ω.	Acos	(ωt	+	Φ)	v	=	ω.√(A2	-	x2)...(ii)	Again,
differentiating	eq(ii)	wrt	time	we	get,	a	=	-ω2.	Asin	(ωt	+	Φ)	a	=	-ω2x	Restoring	force	acting	on	the	body	is,	F	=	-kx	where,	k	=	mω2	Now	for	the	energy	of	the	SHM	particle.	Kinetic	Energy	of	Particles	in	SHMKinetic	Energy(K.E)	=	1/2	mv2																					{v2	=	ω2(A2	-	x2)}	K.E	=	1/2	mω2(A2	-	x2)	Also,	the	kinetic	energy	of	the	particle	in	SHM	is,	K.E	=
1/2	mω2	A2cos2(ωt	+	Φ)	Potential	Energy	of	Particles	in	SHMFor	the	potential	energy	we	know	that,	Potential	Energy(P.E)	=	-	Work	Done	P.E	=	-F.dx	P.E	=	kxdx																																			(As	dx	is	also	negative)	Integrating	from	o	to	x	P.E	=	(kx2)/2	We	know	that,		k	=	mω2	P.E	=	(mω2x2)/2	We	know	that,	{x	=	Asin(ωt	+	Φ)}	P.E	=		(mω2)/2.	A2sin2(ωt	+
Φ)	Total	Mechanical	Energy	of	the	Particle	in	SHMTotal	Energy(E)	=	Kinetic	Energy(K.E)	+	Potential	Energy(P.E)	E	=	1/2	mω2(A2	-	x2)	+	(mω2x2)/2	E	=	1/2	mω2A2	This	is	the	total	Energy	of	the	particle	in	SHM.	Simple	Harmonic,	Periodic,	and	Oscillation	MotionIt	seems	that	Simple	Harmonic,	Periodic,	and	Oscillation	Motions	are	the	same	but	they
are	indeed	different.	Now	let's	learn	about	them	in	detail.	Simple	Harmonic	MotionThe	motion	of	an	object	around	a	mean	position	in	which	the	acceleration	of	the	particle	is	directly	proportional	to	the	displacement	of	the	particle	is	called	Simple	Harmonic	Motion.	Such	as	the	motion	of	a	cantilever.	We	can	say	that	all	Simple	Harmonic	Motions	are
oscillatory	and	periodic,	but	the	converse	is	not	true.	Periodic	MotionPeriodic	motion	is	defined	as	the	motion	of	any	object	that	repeats	its	motion	after	a	fixed	interval	of	time.	Such	as	the	motion	of	the	Moon	around	the	Earth.	Oscillation	MotionOscillatory	motion	is	the	to-and-fro	motion	of	an	object	from	its	mean	position.	SHM	is	an	example	of
Oscillatory	motion.	Difference	between	Periodic,	Oscillation,	and	Simple	Harmonic	MotionThere	are	some	differences	between	Periodic	motion,	Oscillatory	Motion,	and	Simple	Harmonic	Motion,	which	are	listed	as	follows:	The	motion	of	an	object	is	said	to	be	periodic	if	it	moves	in	such	a	way	that	it	repeats	its	path	at	regular	intervals	of	time.The	to-
and-fro	motion	of	an	object	from	its	mean	position	is	defined	as	oscillatory	motion.Simple	Harmonic	Motion	is	the	motion	of	an	object,	around	a	mean	position	in	which	the	acceleration	of	the	particle	is	directly	proportional	to	the	displacement	of	the	particle.Some	Examples	of	Periodic	motion	include	the	motion	of	hands	in	a	clock,	the	movement	of
the	Earth	around	the	Sun,	and	a	simple	pendulum.Examples	of	oscillatory	motion	include	a	simple	pendulum,	a	vibrating	tuning	fork,	AC	current,	waves	such	as	sound	waves,	ocean	waves,	or	light	waves,	etc.Examples	of	SHM	are	the	motion	ofa	spring	system	i.e.,	a	mass	attached	to	the	end	of	a	spring,	swings,	and	the	motion	of	a	cantilever.	Periodic
motion	is	not	always	harmonic.Oscillatory	Motion	is	not	always	periodic,SHM	is	an	example	of	Periodic	and	Oscillatory	motion.Read	More,	FrequencyAngular	VelocityAngular	MomentumSample	Questions	on	Simple	Harmonic	MotionQuestion	1:	Why	is	Harmonic	Motion	Periodic?	Solution:		The	sine	wave	can	represent	a	harmonic	motion.	When	a
spring	is	stretched	from	its	mean	position,	it	oscillates	to	and	fro	about	the	mean	position	under	the	influence	of	a	restoring	force	that	is	always	directed	towards	the	mean	position	and	whose	magnitude	at	any	instant	is	proportional	to	the	body's	displacement	from	the	mean	position	at	that	instant.	When	there	is	no	friction,	the	motion	tends	to	be
periodic.	The	harmonic	motion	is	periodic	in	this	case.	Question	2:	What	are	Periodic	and	Non-Periodic	Changes?	Solution:		Periodic	changes	are	those	that	occur	at	regular	intervals	of	time,	such	as	the	occurrence	of	day	and	night,	or	the	change	of	periods	in	your	school.	Non-periodic	changes	are	those	that	do	not	occur	on	a	regular	basis,	such	as	the
freezing	of	ice	to	water.	Question	3:	What	is	the	period	of	the	Earth's	revolution	around	the	sun	and	around	its	polar	axis?	what	is	the	motion	Earth	performs	explain?	Solution:		The	earth's	revolution	around	the	sun	takes	one	year,	and	its	revolution	around	its	polar	axis	takes	one	day.	The	motion	of	earth	is	periodic	because	after	some	interval	of	time
it	repeats	its	path.	Question	4:	What	is	the	frequency	of	SHM?	How	time	periods	and	frequency	are	related?	Solution:		The	frequency	of	SHM	is	the	number	of	oscillations	performed	by	a	particle	per	unit	of	time.	Hertz,	or	r.p.s.	(rotations	per	second),	is	the	SI	unit	of	frequency.	Frequency	and	time	period	are	related	as:	Frequency,	(f)	=	1/	Time	period
(T)					Question	5:	A	spring	with	a	spring	constant	of	1200	N	m–1	is	mounted	on	a	horizontal	table.	A	3	kg	mass	is	attached	to	the	free	end	of	the	spring.	The	mass	is	then	pulled	sideways	to	a	distance	of	2.0	m	before	being	released.	Determine	the	following:	The	frequency	of	oscillations,Maximum	acceleration	of	the	mass,	andThe	maximum	speed	of
the	mass.Solution:	Given:	Spring	Constant,	k	=	1200	N/m.Mass	of	Object,	m	=	3	kg.Displacement,	x	=	2	m.(1)	Frequency	of	Oscillation:	We	know	that	frequency	(f)	=	1/Time	period	(T)										T	=	2π/ω	and	ω	=	√k/m]	Therefore,	f	=	(1/2π)√k/m			=	(1/2	×	3,14)	√1200/3	=	3.18	Hz.	(2)	Maximum	Acceleration:	Maximum	Acceleration	(a)	=	ω2x	where,	ω	=
Angular	frequency	=	√k/m	Therefore,	a	=	x(k/m)	a	=	2	×	(1200/3)		a=	800	m/s2.	(3)	Maximum	Speed:	Maximum	Speed	(V)	=	ωx		Put,	ω	=	√k/m.	Therefore,	V	=	x(√k/m)	V	=	2	×	(√1200/3)		V	=	40	m/s.	Question	6:	A	mass	of	2	kg	is	attached	to	the	end	of	the	spring	with	a	spring	constant	of	50	N/m.	What	is	the	period	of	the	resulting	simple	harmonic
motion?	(π	=	3.14)	Solution:	Formula	for	time	period	is	T	=	2π√(k/m)	where,	m	is	the	massk	is	the	spring	constantThus,	T	=	2π√(50/2)		⇒	T	=	2π√(25)		⇒	T	=	2π/5		⇒	T	≈	1.26	s	So,	the	time	period	of	the	SHM	is	approximately	1.26	s.	Question	7:	A	block	of	mass	0.5	kg	is	attached	to	the	end	of	the	spring	(spring	constant	=100	N/m).	If	The	block	is
displaced	0.1	m	from	its	equilibrium	position	then	what	is	the	maximum	speed	of	the	block	during	its	motion?	Solution:	The	maximum	speed	of	the	block	is	given	by:	vmax	=	Aω	where,		A	is	Amplitude	of	Motionω	is	Angular	FrequencyAlso,	angular	frequency	ω	is	given	by:	ω	=	√(k/m)	where,		m	is	the	massk	is	the	spring	constantGiven:		Amplitude(A)	=
0.1	mk	=	100	N/mm	=	0.5	Kg⇒	vmax		=	0.1	×	√(100/0.5)		⇒	vmax		=	0.1	×	√(1000/5)		⇒	vmax		=	0.1	×	√(200)		⇒	vmax		=	√2		So,	the	maximum	speed	of	the	block	during	its	motion	is	√2		m/s.	SHM	JEE	Mains	Questions1.	A	damped	harmonic	oscillator	has	a	frequency	of	5	oscillations	per	second.	For	every	10	oscillations,	the	amplitude	of	the	oscillator
drops	to	half.	Find	the	time	taken	to	drop	the	amplitude	to	1/1000	of	the	original	value.	2.	If	the	length	of	a	simple	pendulum	in	SHM	is	increased	by	21%	then	what	is	the	percentage	increase	in	the	time	period	of	the	pendulum	of	the	increased	length	3.	It	is	given	that	the	ratio	of	maximum	acceleration	to	maximum	velocity	in	a	SHM	is	10	second-1
and	at	t	=	0,	the	displacement	is	5	m.	What	is	the	maximum	acceleartion?	Given	that	the	initial	phase	is	π/4	4.	If	a	child	is	swinging	in	a	sitting	position	and	then	he	stands	up,	then	how	the	time	period	of	the	swing	will	be	affected.	5.	The	displacement	of	a	particle	in	simple	harmonic	motion	is	given	b	y	x(t)	=	Asin(πt/90).	Find	the	ratio	of	kinetic	energy
to	the	potential	energy	at	t	=	210	seconds	A	Simple	Harmonic	Motion,	or	SHM,	is	defined	as	a	motion	in	which	the	restoring	force	is	directly	proportional	to	the	displacement	of	the	body	from	its	mean	position.	The	direction	of	this	restoring	force	is	always	towards	the	mean	position.	The	acceleration	of	a	particle	executing	simple	harmonic	motion	is
given	by	a(t)	=	-ω2	x(t).	Here,	ω	is	the	angular	velocity	of	the	particle.	Download	Complete	Chapter	Notes	of	Simple	Harmonic	Motion	Download	Now	Table	of	Contents	Simple	Harmonic,	Periodic	and	Oscillation	Motion	Simple	harmonic	motion	can	be	described	as	an	oscillatory	motion	in	which	the	acceleration	of	the	particle	at	any	position	is	directly
proportional	to	the	displacement	from	the	mean	position.	It	is	a	special	case	of	oscillatory	motion.	All	the	Simple	Harmonic	Motions	are	oscillatory	and	also	periodic,	but	not	all	oscillatory	motions	are	SHM.	Oscillatory	motion	is	also	called	the	harmonic	motion	of	all	the	oscillatory	motions,	wherein	the	most	important	one	is	Simple	Harmonic	Motion
(SHM).	In	this	type	of	oscillatory	motion,	displacement,	velocity	and	acceleration,	and	force	vary	(w.r.t	time)	in	a	way	that	can	be	described	by	either	sine	(or)	the	cosine	functions	collectively	called	sinusoids.	Also	Read:	Simple	Pendulum	Concepts	Spring-Mass	System	The	study	of	Simple	Harmonic	Motion	is	very	useful	and	forms	an	important	tool	in
understanding	the	characteristics	of	sound	waves,	light	waves	and	alternating	currents.	Any	oscillatory	motion	which	is	not	simple	harmonic	can	be	expressed	as	a	superposition	of	several	harmonic	motions	of	different	frequencies.	Difference	between	Periodic,	Oscillation	and	Simple	Harmonic	Motion	Periodic	Motion	A	motion	repeats	itself	after	an
equal	interval	of	time.	For	example,	uniform	circular	motion.	There	is	no	equilibrium	position.	There	is	no	restoring	force.	There	is	no	stable	equilibrium	position.	Oscillation	Motion	To	and	fro	motion	of	a	particle	about	a	mean	position	is	called	an	oscillatory	motion	in	which	a	particle	moves	on	either	side	of	the	equilibrium	(or)	mean	position	is	an
oscillatory	motion.	It	is	a	kind	of	periodic	motion	bounded	between	two	extreme	points.	For	example,	the	oscillation	of	a	simple	pendulum,	spring-mass	system.	The	object	will	keep	on	moving	between	two	extreme	points	about	a	fixed	point	is	called	the	mean	position	(or)	equilibrium	position	along	any	path	(the	path	is	not	a	constraint).	There	will	be	a
restoring	force	directed	towards	the	equilibrium	position	(or)	mean	position.	In	an	oscillatory	motion,	the	net	force	on	the	particle	is	zero	at	the	mean	position.	The	mean	position	is	a	stable	equilibrium	position.	Simple	Harmonic	Motion	or	SHM	It	is	a	special	case	of	oscillation,	along	with	a	straight	line	between	the	two	extreme	points	(the	path	of
SHM	is	a	constraint).	The	path	of	the	object	needs	to	be	a	straight	line.	There	will	be	a	restoring	force	directed	towards	the	equilibrium	position	(or)	mean	position.	The	mean	position	in	Simple	Harmonic	Motion	is	a	stable	equilibrium.	Conditions	for	SHM	\(\begin{array}{l}\begin{matrix}	\overrightarrow{F}\propto	-\overrightarrow{x}	\\
\overrightarrow{a}\,\,\propto	-\overrightarrow{x}	\\	\end{matrix}\end{array}	\)	Types	of	Simple	Harmonic	Motion	The	SHM,	or	Simple	Harmonic	Motion,	can	be	classified	into	two	types:	Linear	Simple	Harmonic	Motion	When	a	particle	moves	to	and	fro	about	a	fixed	point	(called	equilibrium	position)	along	with	a	straight	line,	then	its	motion	is	called
linear	Simple	Harmonic	Motion.	For	example,	the	spring-mass	system.	Conditions	for	Linear	SHM	The	restoring	force	or	acceleration	acting	on	the	particle	should	always	be	proportional	to	the	displacement	of	the	particle	and	directed	towards	the	equilibrium	position.	\(\begin{array}{l}\begin{matrix}	\overrightarrow{F}\propto	-\overrightarrow{x}
\\	\overrightarrow{a}\,\,\propto	-\overrightarrow{x}	\\	\end{matrix}\end{array}	\)	\(\begin{array}{l}\overrightarrow{x}-	\text{displacement	of	particle	from	equilibrium	position}\end{array}	\)	\(\begin{array}{l}\overrightarrow{F}-	\text{Restoring	force}\end{array}	\)	\(\begin{array}{l}\overrightarrow{a}-	\text{acceleration}\end{array}	\)	When	a
system	oscillates	angular	long	with	respect	to	a	fixed	axis,	then	its	motion	is	called	angular	simple	harmonic	motion.	Conditions	to	Execute	Angular	SHM	The	restoring	torque	(or)	angular	acceleration	acting	on	the	particle	should	always	be	proportional	to	the	angular	displacement	of	the	particle	and	directed	towards	the	equilibrium	position.	Τ	∝	θ	or
α	∝	θ	Where,	Τ	–	Torque	α	–	Angular	acceleration	θ	–	Angular	displacement	Simple	Harmonic	Motion	Key	Terms	Mean	Position	The	point	at	which	net	force	acting	on	the	particle	is	zero.	From	the	mean	position,	the	force	acting	on	the	particle	is	\(\begin{array}{l}\overrightarrow{F}\propto	-\overrightarrow{x}\end{array}	\)	\(\begin{array}
{l}\overrightarrow{a}\,\propto	-\overrightarrow{x}\end{array}	\)	\(\begin{array}{l}\overrightarrow{{{F}_{net}}}=0\\\overrightarrow{a}=0\end{array}	\)	The	force	acting	on	the	particle	is	negative	of	the	displacement.	So,	this	point	of	equilibrium	will	be	a	stable	equilibrium.	Amplitude	in	SHM	It	is	the	maximum	displacement	of	the	particle	from
the	mean	position.	Time	Period	and	Frequency	of	SHM	The	minimum	time	after	which	the	particle	keeps	on	repeating	its	motion	is	known	as	the	time	period,	or	the	shortest	time	taken	to	complete	one	oscillation	is	also	defined	as	the	time	period.	T	=	2π/ω	Frequency:	The	number	of	oscillations	per	second	is	defined	as	the	frequency.	Frequency	=	1/T
and,	angular	frequency	ω	=	2πf	=	2π/T	Phase	in	SHM	The	phase	of	a	vibrating	particle	at	any	instant	is	the	state	of	the	vibrating	or	oscillating	particle	regarding	its	displacement	and	direction	of	vibration	at	that	particular	instant.	The	expression	and	position	of	a	particle	as	a	function	of	time.	x	=	A	sin	(ωt	+	Φ)	Where	(ωt	+	Φ)	is	the	phase	of	the
particle,	the	phase	angle	at	time	t	=	0	is	known	as	the	initial	phase.	Phase	Difference		The	difference	in	total	phase	angles	of	two	particles	executing	simple	harmonic	motion	with	respect	to	the	mean	position	is	known	as	the	phase	difference.	Two	vibrating	particles	are	said	to	be	in	the	same	phase;	the	phase	difference	between	them	is	an	even
multiple	of	π.	ΔΦ	=	nπ	where	n	=	0,	1,	2,	3,	.	.	.	.	.	Two	vibrating	particles	are	said	to	be	in	opposite	phases	if	the	phase	difference	between	them	is	an	odd	multiple	of	π.	ΔΦ	=	(2n	+	1)	π	where	n	=	0,	1,	2,	3,	.	.	.	.	.	Simple	Harmonic	Motion	Equation	and	Its	Solution	Consider	a	particle	of	mass	(m)	executing	Simple	Harmonic	Motion	along	a	path	x	o	x;
the	mean	position	at	O.	Let	the	speed	of	the	particle	be	v0	when	it	is	at	position	p	(at	a	distance	no	from	O).	At	t	=	0,	the	particle	at	P	(moving	towards	the	right)	At	t	=	t,	the	particle	is	at	Q	(at	a	distance	x	from	O)	With	a	velocity	(v).	\(\begin{array}{l}\text{The	restoring	force}\	\overrightarrow{F}\	\text{at	Q	is	given	by}\end{array}	\)	\(\begin{array}
{l}\overrightarrow{F}=-K\overrightarrow{x}\end{array}	\)	K	–	is	a	positive	constant	\(\begin{array}{l}\Rightarrow	\overrightarrow{F}=m\overrightarrow{a}\end{array}	\)	Here,	\(\begin{array}{l}\overrightarrow{a}-	\text{acceleration	at	Q}\end{array}	\)	\(\begin{array}{l}\Rightarrow	m\overrightarrow{a}=-K\overrightarrow{x}\end{array}	\)	\
(\begin{array}{l}\Rightarrow	\overrightarrow{a}=-\left(	\frac{K}{m}	\right)\overrightarrow{x}\end{array}	\)	\(\begin{array}{l}Put\	\frac{K}{m}={{\omega	}^{2}}\end{array}	\)	\(\begin{array}{l}\Rightarrow	\omega	=\sqrt{\frac{K}{m}}\end{array}	\)	\(\begin{array}{l}\Rightarrow	\overrightarrow{a}=-\left(	\frac{K}{m}
\right)\overrightarrow{m}=-{{\omega	}^{2}}\overrightarrow{x}\end{array}	\)	Since,	\(\begin{array}{l}\left[	\overrightarrow{a}=\frac{{{d}^{2}}x}{d{{t}^{2}}}	\right]\end{array}	\)	\(\begin{array}{l}\frac{{{d}^{2}}\overrightarrow{x}}{d{{t}^{2}}}=-{{\omega	}^{2}}\overrightarrow{x}\end{array}	\)	d2x/dt2	+	ω2x	=	0,	which	is	the
differential	equation	for	linear	Simple	Harmonic	Motion.	Solutions	of	Differential	Equations	of	SHM	The	differential	equation	for	the	Simple	Harmonic	Motion	has	the	following	solutions:	\(\begin{array}{l}x=A\sin	\omega	\,t\end{array}	\)	(This	solution	when	the	particle	is	in	its	mean	position	point	(O)	in	figure	(a)	\(\begin{array}{l}{{x}_{0}}=A\sin
\phi\end{array}	\)	(When	the	particle	is	at	the	position	&	(not	at	mean	position)	in	figure	(b)	\(\begin{array}{l}x=A\sin	\left(	\omega	t+\phi	\right)\end{array}	\)	(When	the	particle	at	Q	at	in	figure	(b)	(any	time	t).	These	solutions	can	be	verified	by	substituting	these	x	values	in	the	above	differential	equation	for	the	linear	simple	harmonic	motion.
Angular	Simple	Harmonic	Motion	A	body	free	to	rotate	about	an	axis	can	make	angular	oscillations.	For	example,	a	photo	frame	or	a	calendar	suspended	from	a	nail	on	the	wall.	If	it	is	slightly	pushed	from	its	mean	position	and	released,	it	makes	angular	oscillations.	Conditions	for	an	Angular	Oscillation	to	be	Angular	SHM	The	body	must	experience	a
net	torque	that	is	restored	in	nature.	If	the	angle	of	oscillation	is	small,	this	restoring	torque	will	be	directly	proportional	to	the	angular	displacement.	Τ	∝	–	θ	Τ	=	–	kθ	Τ	=	Iα	α	=	–	kθ	\(\begin{array}{l}I\frac{{{d}^{2}}\theta	}{d{{t}^{2}}}=-K\theta\end{array}	\)	\(\begin{array}{l}\frac{{{d}^{2}}\theta	}{d{{t}^{2}}}=-\left(	\frac{K}{I}
\right)\theta	=-\omega	_{0}^{2}\theta\end{array}	\)	\(\begin{array}{l}\frac{{{d}^{2}}\theta	}{d{{t}^{2}}}=-\omega	_{0}^{2}\theta	=0\end{array}	\)	This	is	the	differential	equation	of	an	angular	Simple	Harmonic	Motion.	The	solution	of	this	equation	is	the	angular	position	of	the	particle	with	respect	to	time.	\(\begin{array}{l}\theta	={{\theta
}_{0}}\sin	\left(	{{\omega	}_{0}}t+\phi	\right)\end{array}	\)	Then	the	angular	velocity,	\(\begin{array}{l}\omega	={{\theta	}_{0}}.\,{{\omega	}_{0}}\cos	\left(	{{\omega	}_{0}}t+\phi	\right)\end{array}	\)	θ0	–	Amplitude	of	the	angular	SHM	Example:	Simple	pendulum	Seconds	pendulum	The	physical	pendulum	Torsional	pendulum	Quantitative
Analysis	of	SHM	Let	us	consider	a	particle	executing	Simple	Harmonic	Motion	between	A	and	A1	about	passing	through	the	mean	position	(or)	equilibrium	position	(O).	Its	analysis	is	as	follows	SHM	about	Position	O	Displacement	x	=	-A	x	=	0	x	=	+A	Acceleration	|a|	=	Max	a	=	0	|a|	=	max	Speed	|v|	=	0	|v|	=	Max	|v|	=	0	Kinetic	energy	KE	=	0	KE	=
Max	KE	=	0	Potential	energy	PE	=	Max	PE	=	Min	PE	=	Max	Equation	of	Position	of	a	Particle	as	a	Function	of	Time	Let	us	consider	a	particle,	which	is	executing	SHM	at	time	t	=	0,	and	the	particle	is	at	a	distance	from	the	equilibrium	position.	Necessary	Conditions	for	Simple	Harmonic	Motion	\(\begin{array}{l}\overrightarrow{F}\propto	-
\overrightarrow{x}\end{array}	\)	\(\begin{array}{l}\overrightarrow{a}\propto	-\overrightarrow{x}\end{array}	\)	\(\begin{array}{l}\overrightarrow{a}=-{{\omega	}^{2}}x\end{array}	\)	\(\begin{array}{l}\overrightarrow{a}=\frac{dv}{dx}\frac{dx}{dt}=v\frac{dv}{dx}\end{array}	\)	\(\begin{array}{l}\overrightarrow{a}=v\frac{dv}{dx}=-
{{\omega	}^{2}}x\end{array}	\)	\(\begin{array}{l}\int\limits_{0}^{v}{vdv}=\int\limits_{0}^{x}{-{{\omega	}^{2}}xdx}\end{array}	\)	\(\begin{array}{l}\frac{{{v}^{2}}}{2}=\frac{-{{\omega	}^{2}}{{x}^{2}}}{2}+c….(1)\end{array}	\)	Some	conditions	we	know:	At	point	A	v	=	0	[x	=	A]	the	equation	(1)	becomes	\(\begin{array}
{l}\frac{{{v}^{2}}}{2}=\frac{-{{\omega	}^{2}}{{A}^{2}}}{2}+c\end{array}	\)	Using,	v	=	0	\(\begin{array}{l}0	=\frac{-{{\omega	}^{2}}{{A}^{2}}}{2}+c\end{array}	\)	\(\begin{array}{l}c	=\frac{{{\omega	}^{2}}{{A}^{2}}}{2}\end{array}	\)	Sub	the	value	of	C	in	equation	(1)	\(\begin{array}{l}\frac{{{v}^{2}}}{2}=\frac{-{{\omega
}^{2}}{{x}^{2}}}{2}+\frac{{{\omega	}^{2}}{{A}^{2}}}{2}\end{array}	\)	\(\begin{array}{l}\Rightarrow	{{v}^{2}}=-{{\omega	}^{2}}{{x}^{2}}+{{\omega	}^{2}}{{A}^{2}}\end{array}	\)	\(\begin{array}{l}\Rightarrow	{{v}^{2}}={{\omega	}^{2}}\left(	{{A}^{2}}-{{x}^{2}}	\right)\end{array}	\)	\(\begin{array}{l}v	=
\sqrt{{{\omega	}^{2}}\left(	{{A}^{2}}-{{x}^{2}}	\right)}\end{array}	\)	\(\begin{array}{l}v	=	\omega	\sqrt{{{A}^{2}}-{{x}^{2}}}….(2)\end{array}	\)	Where	v	is	the	velocity	of	the	particle	executing	simple	harmonic	motion	from	the	definition	of	instantaneous	velocity	\(\begin{array}{l}v	=\frac{dx}{dt}=\omega	\sqrt{{{A}^{2}}-
{{x}^{2}}}\end{array}	\)	\(\begin{array}{l}\Rightarrow	\int{\frac{dx}{\sqrt{{{A}^{2}}-{{x}^{2}}}}}=\int\limits_{0}^{t}{\omega	dt}\end{array}	\)	\(\begin{array}{l}\Rightarrow	{{\sin	}^{-1}}\left(	\frac{x}{A}	\right)=\omega	t+\phi\end{array}	\)	x	=	Asin	(	ωt	+	Φ)	.	.	.	.	.	(3)	Equation	(3)	–	Equation	of	the	position	of	a	particle	as	a	function
of	time.	Case	1:	If	at	t	=	0	The	particle	at	x	=	x0	\(\begin{array}{l}\Rightarrow	{{\sin	}^{-1}}\left(	\frac{x}{A}	\right)=\omega	t+\phi\end{array}	\)	\(\begin{array}{l}\Rightarrow	{{\sin	}^{-1}}\left(	\frac{{{x}_{0}}}{A}	\right)=\phi\end{array}	\)	Φ	is	the	initial	phase	of	the	particle.	Case	2:	If	at	t	=	0	The	particle	at	x	=	0	\(\begin{array}{l}{{\sin
}^{-1}}\left(	\frac{O}{A}	\right)=\phi\end{array}	\)	i.e.	Φ	=	0	Case	3:	If	the	particle	is	at	one	of	its	extreme	positions,	x	=	A	at	t	=	0	\(\begin{array}{l}\Rightarrow	{{\sin	}^{-1}}\left(	\frac{A}{A}	\right)=\phi\end{array}	\)	\(\begin{array}{l}\Rightarrow	{{\sin	}^{-1}}\left(	1	\right)=\phi\end{array}	\)	⇒	π/2	=	Φ	So,	the	value	can	be	anything
depending	upon	the	position	of	the	particle	at	t	=	0.	That	is	why	it	is	called	the	initial	phase	of	the	particle.	Now,	if	we	see	the	equation	of	the	position	of	the	particle	with	respect	to	time,	π/2	=	x	=	A	sin	(	ωt	+	Φ)	sin	(ωt	+	Φ)	is	the	periodic	function,	whose	period	is	T	=	2π/ω	Which	can	be	anything,	sine	function	or	cosine	function	Time	Period	of	SHM
The	coefficient	of	t	is	ω.	So,	the	time	period	T	=	2π/ω	ω	=2π/T	=	2πf	ωt	=	Angular	frequency	of	SHM	From	the	expression	of	particle	position	as	a	function	of	time:	\(\begin{array}{l}\text{We	can	find	particles,	displacement}\	\left(	\overrightarrow{x}	\right),	\text{velocity}\	\left(	\overrightarrow{v}	\right)	\text{and	acceleration	as
follows}.\end{array}	\)	Velocity	in	SHM	is	given	by	v	=	dx/dt,	x	=	A	sin	(ωt	+	Φ)	\(\begin{array}{l}v	=	\frac{d}{dt}A\sin	\left(	\omega	t+\phi	\right)=\omega	A\cos	\left(	\omega	t+\phi	\right)\end{array}	\)	\(\begin{array}{l}v	=	A\omega	\sqrt{1-{{\sin	}^{2}}\omega	t}\end{array}	\)	Since	x	=	A	sin	ωt	\(\begin{array}{l}\frac{{{x}^{2}}}
{{{A}^{2}}}={{\sin	}^{2}}\omega	\,t\end{array}	\)	\(\begin{array}{l}\Rightarrow	v	=	A\omega	\sqrt{1-\frac{{{x}^{2}}}{{{A}^{2}}}}\end{array}	\)	\(\begin{array}{l}\Rightarrow	v	=	\omega	\sqrt{{{A}^{2}}-{{x}^{2}}}\end{array}	\)	On	squaring	both	sides,	\(\begin{array}{l}\Rightarrow		{{v}^{2}}={{\omega	}^{2}}\left(	{{A}^{2}}-
{{x}^{2}}	\right)\end{array}	\)	\(\begin{array}{l}\Rightarrow	\frac{{{v}^{2}}}{{{\omega	}^{2}}}=\left(	{{A}^{2}}-{{x}^{2}}	\right)\end{array}	\)	\(\begin{array}{l}\Rightarrow	\frac{{{v}^{2}}}{{{\omega	}^{2}}{{A}^{2}}}=\left(	1-\frac{{{x}^{2}}}{{{A}^{2}}}	\right)\end{array}	\)	\(\begin{array}{l}\Rightarrow	\frac{{{v}^{2}}}
{{{A}^{2}}}+\frac{{{v}^{2}}}{{{A}^{2}}{{\omega	}^{2}}}=1\end{array}	\)	this	is	an	equation	of	an	ellipse.	The	curve	between	displacement	and	velocity	of	a	particle	executing	the	simple	harmonic	motion	is	an	ellipse.	When	ω	=	1,	then	the	curve	between	v	and	x	will	be	circular.	Acceleration	in	SHM	\(\begin{array}
{l}\overrightarrow{a}=\frac{dv}{dt}=\frac{d}{dt}\left(	A\omega	\cos	\omega	t+\phi	\right)\end{array}	\)	\(\begin{array}{l}\Rightarrow	\overrightarrow{a}=-{{\omega	}^{2}}A\sin	\left(	\omega	t+\phi	\right)\end{array}	\)	\(\begin{array}{l}\Rightarrow	\left|	a	\right|=-{{\omega	}^{2}}x\end{array}	\)	Hence,	the	expression	for	displacement,
velocity	and	acceleration	in	linear	simple	harmonic	motion	is	x	=	A	sin	(	ωt	+	Φ)	\(\begin{array}{l}v	=	A\omega	\cos	\left(	\omega	t+\phi	\right)=\omega	\sqrt{{{A}^{2}}-{{x}^{2}}}\end{array}	\)	and	\(\begin{array}{l}a	=	-A{{\omega	}^{2}}\sin	\left(	\omega	t+\phi	\right)=-{{\omega	}^{2}}x\end{array}	\)	Energy	in	Simple	Harmonic	Motion
(SHM)	The	system	that	executes	SHM	is	called	the	harmonic	oscillator.	Consider	a	particle	of	mass	m,	executing	linear	simple	harmonic	motion	of	angular	frequency	(ω)	and	amplitude	(A),	\(\begin{array}{l}\text{the	displacement}\	\left(	\overrightarrow{x}	\right),\	\text{velocity}\	\left(	\overrightarrow{v}	\right)\	\text{and	acceleration}\	\left(
\overrightarrow{a}	\right)\	\text{at	any	time	t	are	given	by}\end{array}	\)	x	=	A	sin	(ωt	+	Φ)	\(\begin{array}{l}v	=	A\omega	\cos	\left(	\omega	t+\phi	\right)=\omega	\sqrt{{{A}^{2}}-{{x}^{2}}}\end{array}	\)	\(\begin{array}{l}a	=	-{{\omega	}^{2}}A\sin	\left(	\omega	t+\phi	\right)=-{{\omega	}^{2}}x\end{array}	\)	\(\begin{array}{l}\text{The
restoring	force}\	\left(	\overrightarrow{F}	\right)\	\text{acting	on	the	particle	is	given	by}\end{array}	\)	F	=	-kx,	where	k	=	mω2.	Kinetic	Energy	of	a	Particle	in	SHM	Kinetic	Energy	\(\begin{array}{l}=\frac{1}{2}m{{v}^{2}}\	\left[	Since,	\;{{v}^{2}}={{A}^{2}}{{\omega	}^{2}}{{\cos	}^{2}}\left(	\omega	t+\phi	\right)	\right]\end{array}	\)	\
(\begin{array}{l}=\frac{1}{2}m{{\omega	}^{2}}{{A}^{2}}{{\cos	}^{2}}\left(	\omega	t+\phi	\right)\end{array}	\)	\(\begin{array}{l}=\frac{1}{2}m{{\omega	}^{2}}\left(	{{A}^{2}}-{{x}^{2}}	\right)\end{array}	\)	Therefore,	the	Kinetic	Energy		\(\begin{array}{l}=\frac{1}{2}m{{\omega	}^{2}}{{A}^{2}}{{\cos	}^{2}}\left(	\omega
t+\phi	\right)=\frac{1}{2}m{{\omega	}^{2}}\left(	{{A}^{2}}-{{x}^{2}}	\right)\end{array}	\)	Potential	Energy	of	SHM	The	total	work	done	by	the	restoring	force	in	displacing	the	particle	from	(x	=	0)	(mean	position)	to	x	=	x:	When	the	particle	has	been	displaced	from	x	to	x	+	dx,	the	work	done	by	restoring	force	is	dw	=	F	dx	=	-kx	dx	\
(\begin{array}{l}w	=	\int{dw}=\int\limits_{0}^{x}{-kxdx=\frac{-k{{x}^{2}}}{2}}\end{array}	\)	\(\begin{array}{l}=	-\frac{m{{\omega	}^{2}}{{x}^{2}}}{2}\end{array}	\)	\(\begin{array}{l}\left[	\,k=m{{\omega	}^{2}}	\right]\end{array}	\)	\(\begin{array}{l}=	-\frac{m{{\omega	}^{2}}}{2}{{A}^{2}}{{\sin	}^{2}}\left(	\omega	t+\phi
\right)\end{array}	\)	Potential	Energy	=	-(work	done	by	restoring	force)	\(\begin{array}{l}=\frac{m{{\omega	}^{2}}{{x}^{2}}}{2}=\frac{m{{\omega	}^{2}}{{A}^{2}}}{2}{{\sin	}^{2}}\left(	\omega	t+\phi	\right)\end{array}	\)	E	=	KE	+	PE	\(\begin{array}{l}E	=	\frac{1}{2}m{{\omega	}^{2}}\left(	{{A}^{2}}-{{x}^{2}}	\right)+\frac{1}
{2}m{{\omega	}^{2}}{{x}^{2}}\end{array}	\)	\(\begin{array}{l}E	=	\frac{1}{2}m{{\omega	}^{2}}{{A}^{2}}\end{array}	\)	Hence,	the	particle’s	total	energy	in	SHM	is	constant,	independent	of	the	instantaneous	displacement.	⇒	Relationship	between	kinetic	energy,	potential	energy	and	time	in	Simple	Harmonic	Motion	at	t	=	0,	when	x	=	±A.
⇒	Variation	of	kinetic	energy	and	potential	energy	in	Simple	Harmonic	Motion	with	displacement.	Geometrical	Interpretation	of	Simple	Harmonic	Motion	If	a	particle	is	moving	with	uniform	speed	along	the	circumference	of	a	circle,	then	the	straight	line	motion	of	the	foot	of	the	perpendicular	drawn	from	the	particle	on	the	diameter	of	the	circle	is
called	simple	harmonic	motion.	SHM	as	a	Projection	of	Circular	Motion	The	particle	is	at	position	P	at	t	=	0	and	revolves	along	a	circle	with	a	constant	angular	velocity	(ω).	The	projection	of	P	on	the	diameter	along	the	x-axis	(M).	At	the	later	time	(t),	the	particle	is	at	Q.	Now,	its	projection	on	the	diameter	along	the	x-axis	is	N.	As	the	particle	P
revolves	around	in	a	circle	anti-clockwise,	its	projection	M	follows	it	up,	moving	back	and	forth	along	the	diameter,	such	that	the	displacement	of	the	point	of	projection	at	any	time	(t)	is	the	x-component	of	the	radius	vector	(A).	x	=	A	cos	(	ωt	+	Φ)	.	.	.	.	.	.	.	(1)	y	=	A	sin	(	ωt	+	Φ)	.	.	.	.	.	(2)	Thus,	we	see	that	the	uniform	circular	motion	is	the
combination	of	two	mutually	perpendicular	linear	harmonic	oscillations.	It	implies	that	P	is	under	uniform	circular	motion,	(M	and	N)	and	(K	and	L)	are	performing	simple	harmonic	motion	about	O	with	the	same	angular	speed	ω	as	that	of	P.	P	is	under	uniform	circular	motion,	which	will	have	centripetal	acceleration	along	A	(radius	vector).	\
(\begin{array}{l}\overrightarrow{{{a}_{c}}}=A{{\omega	}^{2}}\end{array}	\)	(towards	the	centre)	It	can	be	resolved	into	two	components:	\(\begin{array}{l}{{a}_{N}}=A{{\omega	}^{2}}{{\sin	}^{2}}\left(	\omega	t+\phi	\right)\end{array}	\)	\(\begin{array}{l}{{a}_{L}}=A{{\omega	}^{2}}{{\cos	}^{2}}\left(	\omega	t+\phi
\right)\end{array}	\)	aN	and	aL	acceleration	correspond	to	the	points	N	and	L,	respectively.	In	the	above	discussion,	the	foot	of	the	projection	on	the	x-axis	is	called	a	horizontal	phasor.	Similarly,	the	foot	of	the	perpendicular	on	the	y-axis	is	called	the	vertical	phasor.	We	already	know	the	vertical	and	horizontal	phasor	will	execute	the	simple	harmonic
motion	of	amplitude	A	and	angular	frequency	ω.	The	phases	of	the	two	SHMs	differ	by	π/2.	Video	Lessons	Simple	Harmonic	Motion	Short	Notes	Problem-solving	Strategy	in	Horizontal	Phasor	Let	us	assume	a	circle	of	radius	equal	to	the	amplitude	of	SHM.	Assume	a	particle	rotating	in	a	circular	path	moving	with	constant	same	as	that	of	simple
harmonic	motion	in	the	clockwise	direction.	The	angle	made	by	the	particle	at	t	=	0	with	the	upper	vertical	axis	is	equal	to	φ	(phase	constant).	The	horizontal	component	of	the	velocity	of	a	particle	gives	you	the	velocity	of	a	particle	performing	the	simple	harmonic	motion.	The	component	of	the	acceleration	of	a	particle	in	the	horizontal	direction	is
equal	to	the	acceleration	of	the	particle	performing	SHM.	[In	uniform	circular	acceleration	centripetal	only	ac	=	ω2A].	Simple	harmonic	motion	is	a	periodic	motion	in	which	the	particle	acceleration	is	directly	proportional	to	its	displacement	and	is	directed	towards	the	mean	position.	The	restoring	force	is	given	by	the	formula	F	=	-kx	The	negative
sign	shows	that	the	force	is	in	the	opposite	direction.	k	is	the	force	constant.	x	is	the	displacement	of	the	string	from	the	equilibrium	position.	The	harmonic	motion	is	when	the	restoring	force	is	proportional	to	the	​displacement	but	in	opposite	directions.	Simple	Harmonic	Motion	is	a	harmonic	motion	with	a	constant	amplitude	and	the	same	frequency.
The	periodic	motion	of	gradually	decreasing	amplitude	is	called	the	damped	simple	harmonic	motion.	Distance	travelled	by	the	particle	from	its	mean	position	at	any	instant	is	called	the	displacement	of	the	particle	executing	simple	harmonic	motion.	At	the	mean	position,	the	energy	is	entirely	kinetic	energy.	At	the	extreme	position,	the	energy	is
entirely	potential	energy.	The	phase	difference	between	displacement	and	acceleration	of	the	particle	executing	simple	harmonic	motion	is	π	radian.	The	maximum	displacement	of	the	particle	is	called	the	amplitude	of	motion.	Put	your	understanding	of	this	concept	to	test	by	answering	a	few	MCQs.	Click	‘Start	Quiz’	to	begin!	Select	the	correct
answer	and	click	on	the	“Finish”	buttonCheck	your	score	and	answers	at	the	end	of	the	quiz	Visit	BYJU’S	for	all	JEE	related	queries	and	study	materials	0	out	of	0	arewrong	0	out	of	0	are	correct	0	out	of	0	are	Unattempted	View	Quiz	Answers	and	Analysis																When	a	guitar	string	is	plucked	or	a	spring	moves	up	and	down,	the	time	interval
between	each	oscillation	is	defined	as	periodic	motion.	The	time	that	one	oscillation	is	completed	is	called	the	period.	In	addition	to	indicating	repeated	oscillations,	a	period	can	also	represent	one	event.		The	unit	of	measurement	for	a	period	is	typically	indicated	in	seconds.	Frequency																When	a	period	is	repeated,	the	number	of	oscillations
per	unit	of	time	is	indicated	as	frequency.	Mathematically,	the	frequency	is	expressed	by	the	following	formula:				$f=\frac{1}{T}$	Where,	f	=	frequency	T	=	Time	period	1	=	Constant							The	SI	unit	for	frequency	is	in	cycles	per	second,	also	known	as	hertz	(Hz).		One	cycle	is	equal	to	one	oscillation.	Oscillations	are	repetitive	for	a	number	of	cycles.
Review	Questions	1.		A	______	causes	a	disturbance	in	a	system	that	activates	an	oscillation.																																																					2.	Waves	created	by	oscillations	carry	energy.	T/F																																																																				3.	The	restoring	force	of	an	object	______	when	the	deformation	is	increased.	is	increased	is	decreased	stays	the	same
																																																																																																																																			4.	One	cycle	is	equal	to	how	many	oscillations?																																																																																					5.	The	term	_______	refers	to	the	number	of	oscillations	per	unit	of	time.	Simple	Harmonic	Motion:	A	special	Periodic	Motion																Oscillations	are	very	common	in
nature	and	by	human	made	objects	because	they	occur	in	so	many	different	ways.		One	type	of	oscillation	is	simple	harmonic	motion.	It	refers	to	oscillatory	motion	that	is	directly	proportional	to	displacement,	and	the	system	in	which	oscillations	occur	is	called	a	simple	harmonic	oscillator.																If	there	is	no	friction	or	other	nonconservative	forces
that	dampen	oscillations,	a	simple	harmonic	oscillator	will	continue	to	oscillate	indefinitely	with	equal	displacement	on	either	side	of	the	equilibrium	position.		The	maximum	displacement	from	equilibrium	is	called	amplitude.		Amplitude	and	displacement	of	objects	such	as	a	metal	coiled	spring	are	in	meters,	whereas	sound	oscillations	are	indicated	in
units	of	pressure.			Simple	Harmonic	Motion																A	significant	fact	about	simple	harmonic	motion	is	that	the	period	t	and	frequency	f	are	independent	of	amplitude.		For	example,	guitar	strings	will	oscillate	at	the	same	frequency	whether	it	is	plucked	gently	or	hard.		For	this	reason,	simple	harmonic	oscillations	are	used	to	operate	clocks	because
the	period	remains	constant.																The	only	factors	that	affect	the	period	and	frequency	of	simple	harmonic	motion	are	mass	and	the	force	constant	k.		Whenever	a	harmonic	oscillator	is	stiff,	a	large	force	k	is	required	to	activate	it.		Also,	it	will	have	a	smaller	time	period	than	an	object	that	is	less	stiff.		The	period	of	a	harmonic	oscillator	is
impacted	by	its	mass.		The	more	massive	the	system	is,	the	longer	its	period.	The	Link	between	Harmonic	Motion	and	Waves																All	simple	harmonic	motions	are	related	to	sine	and	cosine	waves.		The	displacement	is	a	function	of	time	in	any	harmonic	motion	as	oscillations	occur	with	a	period	T.		The	velocity	of	the	motion	is	also	a	function	of
time.		At	maximum	displacement	from	equilibrium,	velocity	and	time	are	zero.	The	Simple	Pendulum																One	type	of	simple	harmonic	oscillator	is	a	simple	pendulum.	A	simple	pendulum	is	an	object	that	has	a	small	mass,	which	is	suspended	by	a	light	wire	or	string.																	When	a	simple	pendulum	is	displaced	from	equilibrium,	it	swings	in	an
arc.		The	length	of	the	displacement	is	called	the	arc	length	and	is	identified	as	s.	When	displacement	occurs,	a	restoring	force	is	created	that	is	in	the	direction	towards	the	equilibrium	position.		This	restoring	force	is	directly	proportional	to	the	displacement.																Two	factors	affect	the	period	of	a	simple	pendulum,	which	is	the	time	duration	at
which	one	oscillation	takes	place.		One	factor	is	the	length	of	the	string	or	wire,	and	the	second	factor	is	the	acceleration	due	to	gravity.		The	period	T	is	nearly	independent	of	amplitude	and	mass.	Fig.1:	Simple	Pendulum	–	Harmonic	Oscillator	Review	Questions	6.	A	simple	harmonic	motion	is	never	capable	of	oscillating	indefinitely.	T/F										
																														7.	A	significant	fact	about	simple	harmonic	motion	is	that	_____	is	independent	of	amplitude.	the	period	frequency	Both	a	and	b																																																																																																																												8.	Which	factor	is	true	about	affecting	the	period	and	frequency	of	simple	harmonic	motion?	The	less	stiff	an	object	is,	the
smaller	its	time	period.	Whenever	a	harmonic	oscillator	is	stiff,	a	large	force	is	required	to	activate.	The	more	massive	a	system	is,	the	longer	the	period.	All	of	the	above																																																																																																																																			9.	When	an	object	oscillates	and	reaches	its	maximum	displacement,	velocity	and	time	are
______.																																			10.	List	two	factors	that	affect	the	time	period	of	a	simple	pendulum.					Energy	and	the	Simple	Harmonic	Oscillator																A	simple	harmonic	oscillator	has	both	potential	energy	and	kinetic	energy.		When	an	object	is	deformed	and	at	the	moment	it	is	not	moving,	it	has	stored	potential	energy.																Because	a	simple
harmonic	oscillator	has	no	dissipative	forces,	it	has	kinetic	energy.		Therefore,	as	an	undamped	simple	harmonic	motion	takes	place,	the	energy	oscillates	back	and	forth	between	kinetic	and	potential	energy.		An	example	is	the	oscillations	of	a	spring.		When	it	is	completely	compressed	and	is	not	moving,	all	energy	is	stored	as	potential	energy.		When
the	spring	decompresses,	the	elastic	potential	energy	is	converted	to	kinetic	energy.		At	the	equilibrium	position,	the	entire	energy	of	the	spring	is	kinetic.		As	it	moves	passed	equilibrium,	the	energy	in	the	spring	is	converting	back	to	potential	energy.		Velocity	during	Oscillations																When	a	simple	harmonic	oscillation	has	reached	its	maximum
displacement	position,	the	velocity	is	zero.		In	this	position,	all	of	the	energy	is	in	the	potential	form	and	there	is	no	kinetic	energy.		As	the	restoring	force	causes	the	oscillation	to	move	towards	equilibrium,	the	potential	energy	decreases,	and	the	kinetic	energy	increases.		Energy	is	shared	by	both,	but	the	total	energy	does	not	change.		When	the
oscillation	reaches	the	equilibrium	position,	its	velocity	is	at	a	maximum	level.				Maximum	velocity	depends	on	three	factors:	Maximum	velocity	is	directly	proportional	to	amplitude.	Maximum	velocity	is	greater	for	stiffer	objects.	Maximum	velocity	is	smaller	for	objects	that	have	larger	masses.	Uniform	Circular	Motion		When	an	object	moves	in	a
circular	path	with	a	constant	angular	velocity	and	uniform	circular	motion,	a	simple	harmonic	motion	takes	place.		The	motion	is	back	and	forth	on	the	x-axis.		The	period	T	of	an	oscillator	is	the	time	it	takes	for	the	object	to	make	one	complete	revolution.																When	viewing	a	merry-go-round	from	a	distance,	any	object	exhibits	simple	harmonic
motion	when	it	goes	back	and	forth	between	left	and	right	positions	as	it	turns	to	create	uniform	circular	motion.	Review	Questions	16.	Give	an	example	of	when	the	damping	of	an	oscillator	is	desirable.		17.	As	the	oscillations	of	harmonic	motion	slow	down	due	to	damping,	the	net	force	_____.	increases	decreases	stays	the	same	18.	_______	damping
refers	to	a	system	that	is	slow	and	sluggish.	19.	When	driving	an	object	with	a	frequency	equal	to	its	natural	frequency,	a	condition	called	______	occurs.	20.	Whenever	the	damping	of	a	harmonic	oscillator	becomes	smaller,	the	amplitude	of	the	oscillator	also	becomes	smaller.	T/F	Review	Answers	force	T	a	One	Frequency
																																																																																																																								F	c	d	zero	Length	and	acceleration	due	to	gravity																																																																																																	c	zero	T	It	remains	constant	A																																																																																																																									The	shocks	on	an	automobile	b	c	resonance	F	The	article
discusses	the	role	of	transformers	in	electronic	power	supply,	focusing	on	how	they	step	voltage	up	…	Read	More	This	article	covers	diode	testing	and	troubleshooting	of	diodes,	emphasizing	the	importance	of	correct	polarity	and	biasing	in	…	Read	More	The	article	provides	an	overview	of	the	key	specifications	of	diode,	including	maximum	ratings,
operating	conditions,	and	their	…	Read	More	The	article	discusses	the	electrical	characteristics	of	PN	junction	diode,	focusing	on	their	forward	and	reverse	bias	behavior,	…	Read	More	The	article	provides	an	overview	of	atomic	theory,	focusing	on	the	structure	of	matter,	atoms,	and	the	periodic	…	Read	More	This	article	discusses	atomic	states	and
the	three	types	of	atomic	bonding:	ionic	bonding,	covalent	bonding,	and	metallic	…	Read	More	The	article	explores	how	Industry	4.0	leverages	technologies	like	RFID,	M2M	communication,	and	IIoT	for	seamless	data	exchange,	…	Read	More	The	article	provides	an	overview	of	mechatronic	system,	their	components,	and	functions,	highlighting	the
integration	of	mechanical,	electronic,	…	Read	More	The	article	discusses	the	role	of	mechatronic	system	in	modern	society,	highlighting	their	applications	in	vehicles,	robotics,	and	…	Read	More	Learn	how	to	use	an	ohmmeter	to	test	a	bipolar	junction	transistor	(BJT),	identify	its	leads,	and	evaluate	…	Read	More	This	article	discusses	the	advantages
and	disadvantages	of	ICs.	As	you	will	see,	when	all	factors	are	considered,	…	Read	More	The	frequency	of	simple	harmonic	motion	like	a	mass	on	a	spring	is	determined	by	the	mass	m	and	the	stiffness	of	the	spring	expressed	in	terms	of	a	spring	constant	k	(	see	Hooke's	Law):	The	air	outside	an	IB	exam	room	after	the	final	paper	feels	different.	It’s	a
potent	mix	of	exhaustion,	relief,…	Share	—	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	—	remix,	transform,	and	build	upon	the	material	for	any	purpose,	even	commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.	Attribution	—	You	must	give
appropriate	credit	,	provide	a	link	to	the	license,	and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests	the	licensor	endorses	you	or	your	use.	ShareAlike	—	If	you	remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the	original.	No
additional	restrictions	—	You	may	not	apply	legal	terms	or	technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not	have	to	comply	with	the	license	for	elements	of	the	material	in	the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No	warranties	are	given.	The
license	may	not	give	you	all	of	the	permissions	necessary	for	your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.	By	the	end	of	this	section,	you	will	be	able	to:	Define	the	terms	period	and	frequency	List	the	characteristics	of	simple	harmonic	motion	Explain	the	concept	of	phase
shift	Write	the	equations	of	motion	for	the	system	of	a	mass	and	spring	undergoing	simple	harmonic	motion	Describe	the	motion	of	a	mass	oscillating	on	a	vertical	spring	When	you	pluck	a	guitar	string,	the	resulting	sound	has	a	steady	tone	and	lasts	a	long	time	(Figure	15.2).	The	string	vibrates	around	an	equilibrium	position,	and	one	oscillation	is
completed	when	the	string	starts	from	the	initial	position,	travels	to	one	of	the	extreme	positions,	then	to	the	other	extreme	position,	and	returns	to	its	initial	position.	We	define	periodic	motion	to	be	any	motion	that	repeats	itself	at	regular	time	intervals,	such	as	exhibited	by	the	guitar	string	or	by	a	child	swinging	on	a	swing.	In	this	section,	we	study
the	basic	characteristics	of	oscillations	and	their	mathematical	description.	Figure	15.2	When	a	guitar	string	is	plucked,	the	string	oscillates	up	and	down	in	periodic	motion.	The	vibrating	string	causes	the	surrounding	air	molecules	to	oscillate,	producing	sound	waves.	(credit:	Yutaka	Tsutano)	In	the	absence	of	friction,	the	time	to	complete	one
oscillation	remains	constant	and	is	called	the	period	(T).	Its	units	are	usually	seconds,	but	may	be	any	convenient	unit	of	time.	The	word	‘period’	refers	to	the	time	for	some	event	whether	repetitive	or	not,	but	in	this	chapter,	we	shall	deal	primarily	in	periodic	motion,	which	is	by	definition	repetitive.	A	concept	closely	related	to	period	is	the	frequency
of	an	event.	Frequency	(f)	is	defined	to	be	the	number	of	events	per	unit	time.	For	periodic	motion,	frequency	is	the	number	of	oscillations	per	unit	time.	The	relationship	between	frequency	and	period	is	The	SI	unit	for	frequency	is	the	hertz	(Hz)	and	is	defined	as	one	cycle	per	second:	1Hz=1cyclesor1Hz=1s=1s−1.1Hz=1cyclesor1Hz=1s=1s−1.A
cycle	is	one	complete	oscillation.	Determining	the	Frequency	of	Medical	Ultrasound	Ultrasound	machines	are	used	by	medical	professionals	to	make	images	for	examining	internal	organs	of	the	body.	An	ultrasound	machine	emits	high-frequency	sound	waves,	which	reflect	off	the	organs,	and	a	computer	receives	the	waves,	using	them	to	create	a
picture.	We	can	use	the	formulas	presented	in	this	module	to	determine	the	frequency,	based	on	what	we	know	about	oscillations.	Consider	a	medical	imaging	device	that	produces	ultrasound	by	oscillating	with	a	period	of	0.400μs0.400μs.	What	is	the	frequency	of	this	oscillation?	Strategy	The	period	(T)	is	given	and	we	are	asked	to	find	frequency	(f).
Solution	Substitute	0.400μs0.400μs	for	T	in	f=1Tf=1T:	f=1T=10.400×10−6s.f=1T=10.400×10−6s.	Solve	to	find	f=2.50×106Hz.f=2.50×106Hz.	Significance	This	frequency	of	sound	is	much	higher	than	the	highest	frequency	that	humans	can	hear	(the	range	of	human	hearing	is	20	Hz	to	20,000	Hz);	therefore,	it	is	called	ultrasound.	Appropriate
oscillations	at	this	frequency	generate	ultrasound	used	for	noninvasive	medical	diagnoses,	such	as	observations	of	a	fetus	in	the	womb.	A	very	common	type	of	periodic	motion	is	called	simple	harmonic	motion	(SHM).	A	system	that	oscillates	with	SHM	is	called	a	simple	harmonic	oscillator.	In	simple	harmonic	motion,	the	acceleration	of	the	system,
and	therefore	the	net	force,	is	proportional	to	the	displacement	and	acts	in	the	opposite	direction	of	the	displacement.	A	good	example	of	SHM	is	an	object	with	mass	m	attached	to	a	spring	on	a	frictionless	surface,	as	shown	in	Figure	15.3.	The	object	oscillates	around	the	equilibrium	position,	and	the	net	force	on	the	object	is	equal	to	the	force
provided	by	the	spring.	This	force	obeys	Hooke’s	law	Fs=−kx,Fs=−kx,	as	discussed	in	a	previous	chapter.	If	the	net	force	can	be	described	by	Hooke’s	law	and	there	is	no	damping	(slowing	down	due	to	friction	or	other	nonconservative	forces),	then	a	simple	harmonic	oscillator	oscillates	with	equal	displacement	on	either	side	of	the	equilibrium
position,	as	shown	for	an	object	on	a	spring	in	Figure	15.3.	The	maximum	displacement	from	equilibrium	is	called	the	amplitude	(A).	The	units	for	amplitude	and	displacement	are	the	same	but	depend	on	the	type	of	oscillation.	For	the	object	on	the	spring,	the	units	of	amplitude	and	displacement	are	meters.	Figure	15.3	An	object	attached	to	a	spring
sliding	on	a	frictionless	surface	is	an	uncomplicated	simple	harmonic	oscillator.	In	the	above	set	of	figures,	a	mass	is	attached	to	a	spring	and	placed	on	a	frictionless	table.	The	other	end	of	the	spring	is	attached	to	the	wall.	The	position	of	the	mass,	when	the	spring	is	neither	stretched	nor	compressed,	is	marked	as	x=0x=0	and	is	the	equilibrium
position.	(a)	The	mass	is	displaced	to	a	position	x=Ax=A	and	released	from	rest.	(b)	The	mass	accelerates	as	it	moves	in	the	negative	x-direction,	reaching	a	maximum	negative	velocity	at	x=0x=0.	(c)	The	mass	continues	to	move	in	the	negative	x-direction,	slowing	until	it	comes	to	a	stop	at	x=−Ax=−A.	(d)	The	mass	now	begins	to	accelerate	in	the
positive	x-direction,	reaching	a	positive	maximum	velocity	at	x=0x=0.	(e)	The	mass	then	continues	to	move	in	the	positive	direction	until	it	stops	at	x=Ax=A.	The	mass	continues	in	SHM	that	has	an	amplitude	A	and	a	period	T.	The	object’s	maximum	speed	occurs	as	it	passes	through	equilibrium.	The	stiffer	the	spring	is,	the	smaller	the	period	T.	The
greater	the	mass	of	the	object	is,	the	greater	the	period	T.	What	is	so	significant	about	SHM?	For	one	thing,	the	period	T	and	frequency	f	of	a	simple	harmonic	oscillator	are	independent	of	amplitude.	The	string	of	a	guitar,	for	example,	oscillates	with	the	same	frequency	whether	plucked	gently	or	hard.	Two	important	factors	do	affect	the	period	of	a
simple	harmonic	oscillator.	The	period	is	related	to	how	stiff	the	system	is.	A	very	stiff	object	has	a	large	force	constant	(k),	which	causes	the	system	to	have	a	smaller	period.	For	example,	you	can	adjust	a	diving	board’s	stiffness—the	stiffer	it	is,	the	faster	it	vibrates,	and	the	shorter	its	period.	Period	also	depends	on	the	mass	of	the	oscillating	system.
The	more	massive	the	system	is,	the	longer	the	period.	For	example,	a	heavy	person	on	a	diving	board	bounces	up	and	down	more	slowly	than	a	light	one.	In	fact,	the	mass	m	and	the	force	constant	k	are	the	only	factors	that	affect	the	period	and	frequency	of	SHM.	To	derive	an	equation	for	the	period	and	the	frequency,	we	must	first	define	and
analyze	the	equations	of	motion.	Note	that	the	force	constant	is	sometimes	referred	to	as	the	spring	constant.	Consider	a	block	attached	to	a	spring	on	a	frictionless	table	(Figure	15.4).	The	equilibrium	position	(the	position	where	the	spring	is	neither	stretched	nor	compressed)	is	marked	as	x=0x=0.	At	the	equilibrium	position,	the	net	force	is	zero.
Figure	15.4	A	block	is	attached	to	a	spring	and	placed	on	a	frictionless	table.	The	equilibrium	position,	where	the	spring	is	neither	extended	nor	compressed,	is	marked	as	x=0.x=0.	Work	is	done	on	the	block	to	pull	it	out	to	a	position	of	x=+A,x=+A,	and	it	is	then	released	from	rest.	The	maximum	x-position	(A)	is	called	the	amplitude	of	the	motion.
The	block	begins	to	oscillate	in	SHM	between	x=+Ax=+A	and	x=−A,x=−A,	where	A	is	the	amplitude	of	the	motion	and	T	is	the	period	of	the	oscillation.	The	period	is	the	time	for	one	oscillation.	Figure	15.5	shows	the	motion	of	the	block	as	it	completes	one	and	a	half	oscillations	after	release.	Figure	15.6	shows	a	plot	of	the	position	of	the	block
versus	time.	When	the	position	is	plotted	versus	time,	it	is	clear	that	the	data	can	be	modeled	by	a	cosine	function	with	an	amplitude	A	and	a	period	T.	The	cosine	function	cosθcosθ	repeats	every	multiple	of	2π,2π,	whereas	the	motion	of	the	block	repeats	every	period	T.	However,	the	function	cos(2πTt)cos(2πTt)	repeats	every	integer	multiple	of	the
period.	The	maximum	of	the	cosine	function	is	one,	so	it	is	necessary	to	multiply	the	cosine	function	by	the	amplitude	A.	x(t)=Acos(2πTt)=Acos(ωt).x(t)=Acos(2πTt)=Acos(ωt).	Recall	from	the	chapter	on	rotation	that	the	angular	frequency	equals	ω=dθdtω=dθdt.	In	this	case,	the	period	is	constant,	so	the	angular	frequency	is	defined	as	2π2π	divided	by
the	period,	ω=2πTω=2πT.	Figure	15.5	A	block	is	attached	to	one	end	of	a	spring	and	placed	on	a	frictionless	table.	The	other	end	of	the	spring	is	anchored	to	the	wall.	The	equilibrium	position,	where	the	net	force	equals	zero,	is	marked	as	x=0m.x=0m.	Work	is	done	on	the	block,	pulling	it	out	to	x=+Ax=+A,	and	the	block	is	released	from	rest.	The
block	oscillates	between	x=+Ax=+A	and	x=−Ax=−A.	The	force	is	also	shown	as	a	vector.	Figure	15.6	A	graph	of	the	position	of	the	block	shown	in	Figure	15.5	as	a	function	of	time.	The	position	can	be	modeled	as	a	periodic	function,	such	as	a	cosine	or	sine	function.	The	equation	for	the	position	as	a	function	of	time	x(t)=Acos(ωt)x(t)=Acos(ωt)	is
good	for	modeling	data,	where	the	position	of	the	block	at	the	initial	time	t=0.00st=0.00s	is	at	the	amplitude	A	and	the	initial	velocity	is	zero.	Often	when	taking	experimental	data,	the	position	of	the	mass	at	the	initial	time	t=0.00st=0.00s	is	not	equal	to	the	amplitude	and	the	initial	velocity	is	not	zero.	Consider	10	seconds	of	data	collected	by	a
student	in	lab,	shown	in	Figure	15.7.	Figure	15.7	Data	collected	by	a	student	in	lab	indicate	the	position	of	a	block	attached	to	a	spring,	measured	with	a	sonic	range	finder.	The	data	are	collected	starting	at	time	t=0.00s,t=0.00s,	but	the	initial	position	is	near	position	x≈−0.80cm≠3.00cmx≈−0.80cm≠3.00cm,	so	the	initial	position	does	not	equal	the
amplitude	x0=+Ax0=+A.	The	velocity	is	the	time	derivative	of	the	position,	which	is	the	slope	at	a	point	on	the	graph	of	position	versus	time.	The	velocity	is	not	v=0.00m/sv=0.00m/s	at	time	t=0.00st=0.00s,	as	evident	by	the	slope	of	the	graph	of	position	versus	time,	which	is	not	zero	at	the	initial	time.	The	data	in	Figure	15.7	can	still	be	modeled
with	a	periodic	function,	like	a	cosine	function,	but	the	function	is	shifted	to	the	right.	This	shift	is	known	as	a	phase	shift	and	is	usually	represented	by	the	Greek	letter	phi	(ϕ)(ϕ).	The	equation	of	the	position	as	a	function	of	time	for	a	block	on	a	spring	becomes	x(t)=Acos(ωt+ϕ).x(t)=Acos(ωt+ϕ).	This	is	the	generalized	equation	for	SHM	where	t	is	the
time	measured	in	seconds,	ωω	is	the	angular	frequency	with	units	of	inverse	seconds,	A	is	the	amplitude	measured	in	meters	or	centimeters,	and	ϕϕ	is	the	phase	shift	measured	in	radians	(Figure	15.8).	It	should	be	noted	that	because	sine	and	cosine	functions	differ	only	by	a	phase	shift,	this	motion	could	be	modeled	using	either	the	cosine	or	sine
function.	Figure	15.8	(a)	A	cosine	function.	(b)	A	cosine	function	shifted	to	the	left	by	an	angle	ϕϕ.	The	angle	ϕϕ	is	known	as	the	phase	shift	of	the	function.	The	velocity	of	the	mass	on	a	spring,	oscillating	in	SHM,	can	be	found	by	taking	the	derivative	of	the	position	equation:
v(t)=dxdt=ddt(Acos(ωt+ϕ))=−Aωsin(ωt+ϕ)=−vmaxsin(ωt+ϕ).v(t)=dxdt=ddt(Acos(ωt+ϕ))=−Aωsin(ωt+ϕ)=−vmaxsin(ωt+ϕ).	Because	the	sine	function	oscillates	between	–1	and	+1,	the	maximum	velocity	is	the	amplitude	times	the	angular	frequency,	vmax=Aωvmax=Aω.	The	maximum	velocity	occurs	at	the	equilibrium	position	(x=0)(x=0)	when	the
mass	is	moving	toward	x=+Ax=+A.	The	maximum	velocity	in	the	negative	direction	is	attained	at	the	equilibrium	position	(x=0)(x=0)	when	the	mass	is	moving	toward	x=−Ax=−A	and	is	equal	to	−vmax−vmax.	The	acceleration	of	the	mass	on	the	spring	can	be	found	by	taking	the	time	derivative	of	the	velocity:
a(t)=dvdt=ddt(−Aωsin(ωt+ϕ))=−Aω2cos(ωt+φ)=−amaxcos(ωt+ϕ).a(t)=dvdt=ddt(−Aωsin(ωt+ϕ))=−Aω2cos(ωt+φ)=−amaxcos(ωt+ϕ).	The	maximum	acceleration	is	amax=Aω2amax=Aω2.	The	maximum	acceleration	occurs	at	the	position	(x=−A)(x=−A),	and	the	acceleration	at	the	position	(x=−A)(x=−A)	and	is	equal	to	amaxamax.	In	summary,	the
oscillatory	motion	of	a	block	on	a	spring	can	be	modeled	with	the	following	equations	of	motion:	x(t)=Acos(ωt+ϕ)x(t)=Acos(ωt+ϕ)	v(t)=−vmaxsin(ωt+ϕ)v(t)=−vmaxsin(ωt+ϕ)	a(t)=−amaxcos(ωt+ϕ)a(t)=−amaxcos(ωt+ϕ)	Here,	A	is	the	amplitude	of	the	motion,	T	is	the	period,	ϕϕ	is	the	phase	shift,	and	ω=2πT=2πfω=2πT=2πf	is	the	angular	frequency
of	the	motion	of	the	block.	Determining	the	Equations	of	Motion	for	a	Block	and	a	Spring	A	2.00-kg	block	is	placed	on	a	frictionless	surface.	A	spring	with	a	force	constant	of	k=32.00N/mk=32.00N/m	is	attached	to	the	block,	and	the	opposite	end	of	the	spring	is	attached	to	the	wall.	The	spring	can	be	compressed	or	extended.	The	equilibrium	position
is	marked	as	x=0.00m.x=0.00m.	Work	is	done	on	the	block,	pulling	it	out	to	x=+0.02m.x=+0.02m.	The	block	is	released	from	rest	and	oscillates	between	x=+0.02mx=+0.02m	and	x=−0.02m.x=−0.02m.	The	period	of	the	motion	is	1.57	s.	Determine	the	equations	of	motion.	Strategy	We	first	find	the	angular	frequency.	The	phase	shift	is	zero,
ϕ=0.00rad,ϕ=0.00rad,	because	the	block	is	released	from	rest	at	x=A=+0.02m.x=A=+0.02m.	Once	the	angular	frequency	is	found,	we	can	determine	the	maximum	velocity	and	maximum	acceleration.	Solution	The	angular	frequency	can	be	found	and	used	to	find	the	maximum	velocity	and	maximum	acceleration:
ω=2π1.57s=4.00s−1;vmax=Aω=0.02m(4.00s−1)=0.08m/s;	amax=Aω2=0.02m(4.00s−1)2=0.32m/s2.ω=2π1.57s=4.00s−1;vmax=Aω=0.02m(4.00s−1)=0.08m/s;	amax=Aω2=0.02m(4.00s−1)2=0.32m/s2.	All	that	is	left	is	to	fill	in	the	equations	of	motion:	x(t)=Acos(ωt+ϕ)=(0.02m)cos(4.00s−1t);	v(t)=−vmaxsin(ωt+ϕ)=(−0.08m/s)sin(4.00s−1t);
a(t)=−amaxcos(ωt+ϕ)=(−0.32m/s2)cos(4.00s−1t).x(t)=Acos(ωt+ϕ)=(0.02m)cos(4.00s−1t);	v(t)=−vmaxsin(ωt+ϕ)=(−0.08m/s)sin(4.00s−1t);	a(t)=−amaxcos(ωt+ϕ)=(−0.32m/s2)cos(4.00s−1t).	Significance	The	position,	velocity,	and	acceleration	can	be	found	for	any	time.	It	is	important	to	remember	that	when	using	these	equations,	your	calculator
must	be	in	radians	mode.	One	interesting	characteristic	of	the	SHM	of	an	object	attached	to	a	spring	is	that	the	angular	frequency,	and	therefore	the	period	and	frequency	of	the	motion,	depend	on	only	the	mass	and	the	force	constant,	and	not	on	other	factors	such	as	the	amplitude	of	the	motion.	We	can	use	the	equations	of	motion	and	Newton’s
second	law	(F→net=ma→)(F→net=ma→)	to	find	equations	for	the	angular	frequency,	frequency,	and	period.	Consider	the	block	on	a	spring	on	a	frictionless	surface.	There	are	three	forces	on	the	mass:	the	weight,	the	normal	force,	and	the	force	due	to	the	spring.	The	only	two	forces	that	act	perpendicular	to	the	surface	are	the	weight	and	the	normal
force,	which	have	equal	magnitudes	and	opposite	directions,	and	thus	sum	to	zero.	The	only	force	that	acts	parallel	to	the	surface	is	the	force	due	to	the	spring,	so	the	net	force	must	be	equal	to	the	force	of	the	spring:	Fx=−kx;	ma=−kx;	md2xdt2=−kx;	d2xdt2=−kmx.Fx=−kx;	ma=−kx;	md2xdt2=−kx;	d2xdt2=−kmx.	Substituting	the	equations	of
motion	for	x	and	a	gives	us	−Aω2cos(ωt+ϕ)=−kmAcos(ωt+ϕ).−Aω2cos(ωt+ϕ)=−kmAcos(ωt+ϕ).	Cancelling	out	like	terms	and	solving	for	the	angular	frequency	yields	The	angular	frequency	depends	only	on	the	force	constant	and	the	mass,	and	not	the	amplitude.	The	angular	frequency	is	defined	as	ω=2π/T,ω=2π/T,	which	yields	an	equation	for	the
period	of	the	motion:	The	period	also	depends	only	on	the	mass	and	the	force	constant.	The	greater	the	mass,	the	longer	the	period.	The	stiffer	the	spring,	the	shorter	the	period.	The	frequency	is	f=1T=12πkm.f=1T=12πkm.	When	a	spring	is	hung	vertically	and	a	block	is	attached	and	set	in	motion,	the	block	oscillates	in	SHM.	In	this	case,	there	is	no
normal	force,	and	the	net	effect	of	the	force	of	gravity	is	to	change	the	equilibrium	position.	Consider	Figure	15.9.	Two	forces	act	on	the	block:	the	weight	and	the	force	of	the	spring.	The	weight	is	constant	and	the	force	of	the	spring	changes	as	the	length	of	the	spring	changes.	Figure	15.9	A	spring	is	hung	from	the	ceiling.	When	a	block	is	attached,
the	block	is	at	the	equilibrium	position	where	the	weight	of	the	block	is	equal	to	the	force	of	the	spring.	(a)	The	spring	is	hung	from	the	ceiling	and	the	equilibrium	position	is	marked	as	yoyo.	(b)	A	mass	is	attached	to	the	spring	and	a	new	equilibrium	position	is	reached	(y1=yo−Δyy1=yo−Δy)	when	the	force	provided	by	the	spring	equals	the	weight	of
the	mass.	(c)	The	free-body	diagram	of	the	mass	shows	the	two	forces	acting	on	the	mass:	the	weight	and	the	force	of	the	spring.	When	the	block	reaches	the	equilibrium	position,	as	seen	in	Figure	15.9,	the	force	of	the	spring	equals	the	weight	of	the	block,	Fnet=Fs−mg=0Fnet=Fs−mg=0,	where	−k(−Δy)=mg.−k(−Δy)=mg.	From	the	figure,	the
change	in	the	position	is	Δy=y0−y1Δy=y0−y1	and	since	−k(−Δy)=mg−k(−Δy)=mg,	we	havek(y0−y1)−mg=0.k(y0−y1)−mg=0.	If	the	block	is	displaced	and	released,	it	will	oscillate	around	the	new	equilibrium	position.	As	shown	in	Figure	15.10,	if	the	position	of	the	block	is	recorded	as	a	function	of	time,	the	recording	is	a	periodic	function.	If	the
block	is	displaced	to	a	position	y,	the	net	force	becomes	Fnet=k(y0−y)−mg=0Fnet=k(y0−y)−mg=0.	But	we	found	that	at	the	equilibrium	position,	mg=kΔy=ky0−ky1mg=kΔy=ky0−ky1.	Substituting	for	the	weight	in	the	equation	yields	Fnet=ky0−ky−(ky0−ky1)=−k(y−ky1).Fnet=ky0−ky−(ky0−ky1)=−k(y−ky1).	Recall	that	y1y1	is	just	the	equilibrium
position	and	any	position	can	be	set	to	be	the	point	y=0.00m.y=0.00m.	So	let’s	set	y1y1	to	y=0.00m.y=0.00m.	The	net	force	then	becomes	Fnet=−ky;	md2ydt2=−ky.Fnet=−ky;	md2ydt2=−ky.	This	is	just	what	we	found	previously	for	a	horizontally	sliding	mass	on	a	spring.	The	constant	force	of	gravity	only	served	to	shift	the	equilibrium	location	of
the	mass.	Therefore,	the	solution	should	be	the	same	form	as	for	a	block	on	a	horizontal	spring,	y(t)=Acos(ωt+ϕ).y(t)=Acos(ωt+ϕ).	The	equations	for	the	velocity	and	the	acceleration	also	have	the	same	form	as	for	the	horizontal	case.	Note	that	the	inclusion	of	the	phase	shift	means	that	the	motion	can	actually	be	modeled	using	either	a	cosine	or	a
sine	function,	since	these	two	functions	only	differ	by	a	phase	shift.	Figure	15.10	Graphs	of	y(t),	v(t),	and	a(t)	versus	t	for	the	motion	of	an	object	on	a	vertical	spring.	The	net	force	on	the	object	can	be	described	by	Hooke’s	law,	so	the	object	undergoes	SHM.	Note	that	the	initial	position	has	the	vertical	displacement	at	its	maximum	value	A;	v	is
initially	zero	and	then	negative	as	the	object	moves	down;	the	initial	acceleration	is	negative,	back	toward	the	equilibrium	position	and	becomes	zero	at	that	point.	Share	—	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	—	remix,	transform,	and	build	upon	the	material	for	any	purpose,	even
commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.	Attribution	—	You	must	give	appropriate	credit	,	provide	a	link	to	the	license,	and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests	the	licensor	endorses	you	or	your	use.	ShareAlike	—	If	you
remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the	original.	No	additional	restrictions	—	You	may	not	apply	legal	terms	or	technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not	have	to	comply	with	the	license	for	elements	of	the	material	in
the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No	warranties	are	given.	The	license	may	not	give	you	all	of	the	permissions	necessary	for	your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.	To-and-fro	periodic	motion	in	science	and
engineering	Simple	harmonic	motion	shown	both	in	real	space	and	phase	space.	The	orbit	is	periodic.	(Here	the	velocity	and	position	axes	have	been	reversed	from	the	standard	convention	to	align	the	two	diagrams)	Part	of	a	series	onClassical	mechanics	F	=	d	p	d	t	{\displaystyle	{\textbf	{F}}={\frac	{d\mathbf	{p}	}{dt}}}	Second	law	of	motion
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Routh	Liouville	Appell	Gibbs	Koopman	von	Neumann	Physics	portal		Categoryvte	In	mechanics	and	physics,	simple	harmonic	motion	(sometimes	abbreviated	as	SHM)	is	a	special	type	of	periodic	motion	an	object	experiences	by	means	of	a	restoring	force	whose	magnitude	is	directly	proportional	to	the	distance	of	the	object	from	an	equilibrium
position	and	acts	towards	the	equilibrium	position.	It	results	in	an	oscillation	that	is	described	by	a	sinusoid	which	continues	indefinitely	(if	uninhibited	by	friction	or	any	other	dissipation	of	energy).[1]	Simple	harmonic	motion	can	serve	as	a	mathematical	model	for	a	variety	of	motions,	but	is	typified	by	the	oscillation	of	a	mass	on	a	spring	when	it	is
subject	to	the	linear	elastic	restoring	force	given	by	Hooke's	law.	The	motion	is	sinusoidal	in	time	and	demonstrates	a	single	resonant	frequency.	Other	phenomena	can	be	modeled	by	simple	harmonic	motion,	including	the	motion	of	a	simple	pendulum,	although	for	it	to	be	an	accurate	model,	the	net	force	on	the	object	at	the	end	of	the	pendulum
must	be	proportional	to	the	displacement	(and	even	so,	it	is	only	a	good	approximation	when	the	angle	of	the	swing	is	small;	see	small-angle	approximation).	Simple	harmonic	motion	can	also	be	used	to	model	molecular	vibration.	A	mass-spring	system	is	a	classic	example	of	simple	harmonic	motion.	Simple	harmonic	motion	provides	a	basis	for	the
characterization	of	more	complicated	periodic	motion	through	the	techniques	of	Fourier	analysis.	The	motion	of	a	particle	moving	along	a	straight	line	with	an	acceleration	whose	direction	is	always	toward	a	fixed	point	on	the	line	and	whose	magnitude	is	proportional	to	the	displacement	from	the	fixed	point	is	called	simple	harmonic	motion.[2]	In	the
diagram,	a	simple	harmonic	oscillator,	consisting	of	a	weight	attached	to	one	end	of	a	spring,	is	shown.	The	other	end	of	the	spring	is	connected	to	a	rigid	support	such	as	a	wall.	If	the	system	is	left	at	rest	at	the	equilibrium	position	then	there	is	no	net	force	acting	on	the	mass.	However,	if	the	mass	is	displaced	from	the	equilibrium	position,	the
spring	exerts	a	restoring	elastic	force	that	obeys	Hooke's	law.	Mathematically,	F	=	−	k	x	,	{\displaystyle	\mathbf	{F}	=-k\mathbf	{x}	,}	where	F	is	the	restoring	elastic	force	exerted	by	the	spring	(in	SI	units:	N),	k	is	the	spring	constant	(N·m−1),	and	x	is	the	displacement	from	the	equilibrium	position	(in	metres).	For	any	simple	mechanical	harmonic
oscillator:	When	the	system	is	displaced	from	its	equilibrium	position,	a	restoring	force	that	obeys	Hooke's	law	tends	to	restore	the	system	to	equilibrium.	Once	the	mass	is	displaced	from	its	equilibrium	position,	it	experiences	a	net	restoring	force.	As	a	result,	it	accelerates	and	starts	going	back	to	the	equilibrium	position.	When	the	mass	moves
closer	to	the	equilibrium	position,	the	restoring	force	decreases.	At	the	equilibrium	position,	the	net	restoring	force	vanishes.	However,	at	x	=	0,	the	mass	has	momentum	because	of	the	acceleration	that	the	restoring	force	has	imparted.	Therefore,	the	mass	continues	past	the	equilibrium	position,	compressing	the	spring.	A	net	restoring	force	then
slows	it	down	until	its	velocity	reaches	zero,	whereupon	it	is	accelerated	back	to	the	equilibrium	position	again.	As	long	as	the	system	has	no	energy	loss,	the	mass	continues	to	oscillate.	Thus	simple	harmonic	motion	is	a	type	of	periodic	motion.	If	energy	is	lost	in	the	system,	then	the	mass	exhibits	damped	oscillation.	Note	if	the	real	space	and	phase
space	plot	are	not	co-linear,	the	phase	space	motion	becomes	elliptical.	The	area	enclosed	depends	on	the	amplitude	and	the	maximum	momentum.	In	Newtonian	mechanics,	for	one-dimensional	simple	harmonic	motion,	the	equation	of	motion,	which	is	a	second-order	linear	ordinary	differential	equation	with	constant	coefficients,	can	be	obtained	by
means	of	Newton's	second	law	and	Hooke's	law	for	a	mass	on	a	spring.	F	n	e	t	=	m	d	2	x	d	t	2	=	−	k	x	,	{\displaystyle	F_{\mathrm	{net}	}=m{\frac	{\mathrm	{d}	^{2}x}{\mathrm	{d}	t^{2}}}=-kx,}	where	m	is	the	inertial	mass	of	the	oscillating	body,	x	is	its	displacement	from	the	equilibrium	(or	mean)	position,	and	k	is	a	constant	(the	spring
constant	for	a	mass	on	a	spring).	Therefore,	d	2	x	d	t	2	=	−	k	m	x	{\displaystyle	{\frac	{\mathrm	{d}	^{2}x}{\mathrm	{d}	t^{2}}}=-{\frac	{k}{m}}x}	Solving	the	differential	equation	above	produces	a	solution	that	is	a	sinusoidal	function:	x	(	t	)	=	c	1	cos	⁡	(	ω	t	)	+	c	2	sin	⁡	(	ω	t	)	,	{\displaystyle	x(t)=c_{1}\cos	\left(\omega	t\right)+c_{2}\sin
\left(\omega	t\right),}	where	ω	=	k	/	m	.	{\textstyle	{\omega	}={\sqrt	{{k}/{m}}}.}	The	meaning	of	the	constants	c	1	{\displaystyle	c_{1}}	and	c	2	{\displaystyle	c_{2}}	can	be	easily	found:	setting	t	=	0	{\displaystyle	t=0}	on	the	equation	above	we	see	that	x	(	0	)	=	c	1	{\displaystyle	x(0)=c_{1}}	,	so	that	c	1	{\displaystyle	c_{1}}	is	the	initial
position	of	the	particle,	c	1	=	x	0	{\displaystyle	c_{1}=x_{0}}	;	taking	the	derivative	of	that	equation	and	evaluating	at	zero	we	get	that	x	˙	(	0	)	=	ω	c	2	{\displaystyle	{\dot	{x}}(0)=\omega	c_{2}}	,	so	that	c	2	{\displaystyle	c_{2}}	is	the	initial	speed	of	the	particle	divided	by	the	angular	frequency,	c	2	=	v	0	ω	{\displaystyle	c_{2}={\frac	{v_{0}}
{\omega	}}}	.	Thus	we	can	write:	x	(	t	)	=	x	0	cos	⁡	(	k	m	t	)	+	v	0	k	m	sin	⁡	(	k	m	t	)	.	{\displaystyle	x(t)=x_{0}\cos	\left({\sqrt	{\frac	{k}{m}}}t\right)+{\frac	{v_{0}}{\sqrt	{\frac	{k}{m}}}}\sin	\left({\sqrt	{\frac	{k}{m}}}t\right).}	This	equation	can	also	be	written	in	the	form:	x	(	t	)	=	A	cos	⁡	(	ω	t	−	φ	)	,	{\displaystyle	x(t)=A\cos	\left(\omega	t-\varphi
\right),}	where	A	=	c	1	2	+	c	2	2	{\displaystyle	A={\sqrt	{{c_{1}}^{2}+{c_{2}}^{2}}}}	tan	⁡	φ	=	c	2	c	1	,	{\displaystyle	\tan	\varphi	={\frac	{c_{2}}{c_{1}}},}	sin	⁡	φ	=	c	2	A	,	cos	⁡	φ	=	c	1	A	{\displaystyle	\sin	\varphi	={\frac	{c_{2}}{A}},\;\cos	\varphi	={\frac	{c_{1}}{A}}}	or	equivalently	A	=	|	c	1	+	c	2	i	|	,	{\displaystyle	A=|c_{1}+c_{2}i|,}	φ	=
arg	⁡	(	c	1	+	c	2	i	)	{\displaystyle	\varphi	=\arg(c_{1}+c_{2}i)}	In	the	solution,	c1	and	c2	are	two	constants	determined	by	the	initial	conditions	(specifically,	the	initial	position	at	time	t	=	0	is	c1,	while	the	initial	velocity	is	c2ω),	and	the	origin	is	set	to	be	the	equilibrium	position.[A]	Each	of	these	constants	carries	a	physical	meaning	of	the	motion:	A	is
the	amplitude	(maximum	displacement	from	the	equilibrium	position),	ω	=	2πf	is	the	angular	frequency,	and	φ	is	the	initial	phase.[B]	Using	the	techniques	of	calculus,	the	velocity	and	acceleration	as	a	function	of	time	can	be	found:	v	(	t	)	=	d	x	d	t	=	−	A	ω	sin	⁡	(	ω	t	−	φ	)	,	{\displaystyle	v(t)={\frac	{\mathrm	{d}	x}{\mathrm	{d}	t}}=-A\omega
\sin(\omega	t-\varphi	),}	Speed:	ω	A	2	−	x	2	{\displaystyle	{\omega	}{\sqrt	{A^{2}-x^{2}}}}	Maximum	speed:	v	=	ωA	(at	equilibrium	point)	a	(	t	)	=	d	2	x	d	t	2	=	−	A	ω	2	cos	⁡	(	ω	t	−	φ	)	.	{\displaystyle	a(t)={\frac	{\mathrm	{d}	^{2}x}{\mathrm	{d}	t^{2}}}=-A\omega	^{2}\cos(\omega	t-\varphi	).}	Maximum	acceleration:	Aω2	(at	extreme	points)
By	definition,	if	a	mass	m	is	under	SHM	its	acceleration	is	directly	proportional	to	displacement.	a	(	x	)	=	−	ω	2	x	.	{\displaystyle	a(x)=-\omega	^{2}x.}	where	ω	2	=	k	m	{\displaystyle	\omega	^{2}={\frac	{k}{m}}}	Since	ω	=	2πf,	f	=	1	2	π	k	m	,	{\displaystyle	f={\frac	{1}{2\pi	}}{\sqrt	{\frac	{k}{m}}},}	and,	since	T	=	⁠1/f⁠	where	T	is	the	time
period,	T	=	2	π	m	k	.	{\displaystyle	T=2\pi	{\sqrt	{\frac	{m}{k}}}.}	These	equations	demonstrate	that	the	simple	harmonic	motion	is	isochronous	(the	period	and	frequency	are	independent	of	the	amplitude	and	the	initial	phase	of	the	motion).	Substituting	ω2	with	⁠k/m⁠,	the	kinetic	energy	K	of	the	system	at	time	t	is	K	(	t	)	=	1	2	m	v	2	(	t	)	=	1	2	m	ω	2
A	2	sin	2	⁡	(	ω	t	−	φ	)	=	1	2	k	A	2	sin	2	⁡	(	ω	t	−	φ	)	,	{\displaystyle	K(t)={\tfrac	{1}{2}}mv^{2}(t)={\tfrac	{1}{2}}m\omega	^{2}A^{2}\sin	^{2}(\omega	t-\varphi	)={\tfrac	{1}{2}}kA^{2}\sin	^{2}(\omega	t-\varphi	),}	and	the	potential	energy	is	U	(	t	)	=	1	2	k	x	2	(	t	)	=	1	2	k	A	2	cos	2	⁡	(	ω	t	−	φ	)	.	{\displaystyle	U(t)={\tfrac	{1}{2}}kx^{2}(t)=
{\tfrac	{1}{2}}kA^{2}\cos	^{2}(\omega	t-\varphi	).}	In	the	absence	of	friction	and	other	energy	loss,	the	total	mechanical	energy	has	a	constant	value	E	=	K	+	U	=	1	2	k	A	2	.	{\displaystyle	E=K+U={\tfrac	{1}{2}}kA^{2}.}	An	undamped	spring–mass	system	undergoes	simple	harmonic	motion.	The	following	physical	systems	are	some	examples	of
simple	harmonic	oscillator.	A	mass	m	attached	to	a	spring	of	spring	constant	k	exhibits	simple	harmonic	motion	in	closed	space.	The	equation	for	describing	the	period:	T	=	2	π	m	k	{\displaystyle	T=2\pi	{\sqrt	{\frac	{m}{k}}}}	shows	the	period	of	oscillation	is	independent	of	the	amplitude,	though	in	practice	the	amplitude	should	be	small.	The	above
equation	is	also	valid	in	the	case	when	an	additional	constant	force	is	being	applied	on	the	mass,	i.e.	the	additional	constant	force	cannot	change	the	period	of	oscillation.	Simple	harmonic	motion	can	be	considered	the	one-dimensional	projection	of	uniform	circular	motion.	If	an	object	moves	with	angular	speed	ω	around	a	circle	of	radius	r	centered	at
the	origin	of	the	xy-plane,	then	its	motion	along	each	coordinate	is	simple	harmonic	motion	with	amplitude	r	and	angular	frequency	ω.	The	motion	of	a	body	in	which	it	moves	to	and	from	a	definite	point	is	also	called	oscillatory	motion	or	vibratory	motion.	The	time	period	is	able	to	be	calculated	by	T	=	2	π	l	g	{\displaystyle	T=2\pi	{\sqrt	{\frac	{l}
{g}}}}	where	l	is	the	distance	from	rotation	to	the	object's	center	of	mass	undergoing	SHM	and	g	is	gravitational	acceleration.	This	is	analogous	to	the	mass-spring	system.	A	pendulum	making	25	complete	oscillations	in	60	s,	a	frequency	of	0.416	Hertz	In	the	small-angle	approximation,	the	motion	of	a	simple	pendulum	is	approximated	by	simple
harmonic	motion.	The	period	of	a	mass	attached	to	a	pendulum	of	length	l	with	gravitational	acceleration	g	{\displaystyle	g}	is	given	by	T	=	2	π	l	g	{\displaystyle	T=2\pi	{\sqrt	{\frac	{l}{g}}}}	This	shows	that	the	period	of	oscillation	is	independent	of	the	amplitude	and	mass	of	the	pendulum	but	not	of	the	acceleration	due	to	gravity,	g	{\displaystyle
g}	,	therefore	a	pendulum	of	the	same	length	on	the	Moon	would	swing	more	slowly	due	to	the	Moon's	lower	gravitational	field	strength.	Because	the	value	of	g	{\displaystyle	g}	varies	slightly	over	the	surface	of	the	earth,	the	time	period	will	vary	slightly	from	place	to	place	and	will	also	vary	with	height	above	sea	level.	This	approximation	is	accurate
only	for	small	angles	because	of	the	expression	for	angular	acceleration	α	being	proportional	to	the	sine	of	the	displacement	angle:	−	m	g	l	sin	⁡	θ	=	I	α	,	{\displaystyle	-mgl\sin	\theta	=I\alpha	,}	where	I	is	the	moment	of	inertia.	When	θ	is	small,	sin θ	≈	θ	and	therefore	the	expression	becomes	−	m	g	l	θ	=	I	α	{\displaystyle	-mgl\theta	=I\alpha	}	which
makes	angular	acceleration	directly	proportional	and	opposite	to	θ,	satisfying	the	definition	of	simple	harmonic	motion	(that	net	force	is	directly	proportional	to	the	displacement	from	the	mean	position	and	is	directed	towards	the	mean	position).	Main	article:	Scotch	yoke	A	Scotch	yoke	mechanism	can	be	used	to	convert	between	rotational	motion
and	linear	reciprocating	motion.	The	linear	motion	can	take	various	forms	depending	on	the	shape	of	the	slot,	but	the	basic	yoke	with	a	constant	rotation	speed	produces	a	linear	motion	that	is	simple	harmonic	in	form.	Scotch	yoke	animation	Circle	group	Complex	harmonic	motion	Damping	ratio	Harmonic	oscillator	Isochronous	timing	Lorentz
oscillator	model	Newtonian	mechanics	Pendulum	Rayleigh–Lorentz	pendulum	Small-angle	approximation	String	vibration	Uniform	circular	motion	^	The	choice	of	using	a	cosine	in	this	equation	is	a	convention.	Other	valid	formulations	are:	x	(	t	)	=	A	sin	⁡	(	ω	t	+	φ	′	)	,	{\displaystyle	x(t)=A\sin	\left(\omega	t+\varphi	'\right),}	where	tan	⁡	φ	′	=	c	1	c	2	,
{\displaystyle	\tan	\varphi	'={\frac	{c_{1}}{c_{2}}},}	since	cos	θ	=	sin(⁠π/2⁠	−	θ).	^	The	maximum	displacement	(that	is,	the	amplitude),	xmax,	occurs	when	cos(ωt	±	φ)	=	1,	and	thus	when	xmax	=	A.	^	"Simple	harmonic	motion	|	Formula,	Examples,	&	Facts	|	Britannica".	britannica.com.	2024-09-30.	Retrieved	2024-10-11.	^	"Simple	Harmonic	Motion
–	Concepts".	Fowles,	Grant	R.;	Cassiday,	George	L.	(2005).	Analytical	Mechanics	(7th	ed.).	Thomson	Brooks/Cole.	ISBN	0-534-49492-7.	Taylor,	John	R.	(2005).	Classical	Mechanics.	University	Science	Books.	ISBN	1-891389-22-X.	Thornton,	Stephen	T.;	Marion,	Jerry	B.	(2003).	Classical	Dynamics	of	Particles	and	Systems	(5th	ed.).	Brooks	Cole.	ISBN	0-
534-40896-6.	Walker,	Jearl	(2011).	Principles	of	Physics	(9th	ed.).	Hoboken,	New	Jersey:	Wiley.	ISBN	978-0-470-56158-4.	Wikimedia	Commons	has	media	related	to	Simple	harmonic	motion.	Simple	Harmonic	Motion	from	HyperPhysics	Java	simulation	of	spring-mass	oscillator	Geogebra	applet	for	spring-mass,	with	3	attached	PDFs	on	SHM,
driven/damped	oscillators,	spring-mass	with	friction	Retrieved	from	"	Download	the	Testbook	APP	&	Get	Pass	Pro	Max	FREE	for	7	Days10,000+	Study	NotesRealtime	Doubt	Support71000+	Mock	TestsRankers	Test	Series+	more	benefitsDownload	App	Now	By	the	end	of	this	section,	you	will	be	able	to:	Describe	a	simple	harmonic	oscillator.	Explain
the	link	between	simple	harmonic	motion	and	waves.	The	oscillations	of	a	system	in	which	the	net	force	can	be	described	by	Hooke’s	law	are	of	special	importance,	because	they	are	very	common.	They	are	also	the	simplest	oscillatory	systems.	Simple	Harmonic	Motion	(SHM)	is	the	name	given	to	oscillatory	motion	for	a	system	where	the	net	force	can
be	described	by	Hooke’s	law,	and	such	a	system	is	called	a	simple	harmonic	oscillator.	If	the	net	force	can	be	described	by	Hooke’s	law	and	there	is	no	damping	(by	friction	or	other	non-conservative	forces),	then	a	simple	harmonic	oscillator	will	oscillate	with	equal	displacement	on	either	side	of	the	equilibrium	position,	as	shown	for	an	object	on	a
spring	in	Figure	1.	The	maximum	displacement	from	equilibrium	is	called	the	amplitude	X.	The	units	for	amplitude	and	displacement	are	the	same,	but	depend	on	the	type	of	oscillation.	For	the	object	on	the	spring,	the	units	of	amplitude	and	displacement	are	meters;	whereas	for	sound	oscillations,	they	have	units	of	pressure	(and	other	types	of
oscillations	have	yet	other	units).	Because	amplitude	is	the	maximum	displacement,	it	is	related	to	the	energy	in	the	oscillation.	Figure	1.	An	object	attached	to	a	spring	sliding	on	a	frictionless	surface	is	an	uncomplicated	simple	harmonic	oscillator.	When	displaced	from	equilibrium,	the	object	performs	simple	harmonic	motion	that	has	an	amplitude	X
and	a	period	T.	The	object’s	maximum	speed	occurs	as	it	passes	through	equilibrium.	The	stiffer	the	spring	is,	the	smaller	the	period	T.	The	greater	the	mass	of	the	object	is,	the	greater	the	period	T.	Find	a	bowl	or	basin	that	is	shaped	like	a	hemisphere	on	the	inside.	Place	a	marble	inside	the	bowl	and	tilt	the	bowl	periodically	so	the	marble	rolls	from
the	bottom	of	the	bowl	to	equally	high	points	on	the	sides	of	the	bowl.	Get	a	feel	for	the	force	required	to	maintain	this	periodic	motion.	What	is	the	restoring	force	and	what	role	does	the	force	you	apply	play	in	the	simple	harmonic	motion	(SHM)	of	the	marble?	What	is	so	significant	about	simple	harmonic	motion?	One	special	thing	is	that	the	period	T
and	frequency	f	of	a	simple	harmonic	oscillator	are	independent	of	amplitude.	The	string	of	a	guitar,	for	example,	will	oscillate	with	the	same	frequency	whether	plucked	gently	or	hard.	Because	the	period	is	constant,	a	simple	harmonic	oscillator	can	be	used	as	a	clock.	Two	important	factors	do	affect	the	period	of	a	simple	harmonic	oscillator.	The
period	is	related	to	how	stiff	the	system	is.	A	very	stiff	object	has	a	large	force	constant	k,	which	causes	the	system	to	have	a	smaller	period.	For	example,	you	can	adjust	a	diving	board’s	stiffness—the	stiffer	it	is,	the	faster	it	vibrates,	and	the	shorter	its	period.	Period	also	depends	on	the	mass	of	the	oscillating	system.	The	more	massive	the	system	is,
the	longer	the	period.	For	example,	a	heavy	person	on	a	diving	board	bounces	up	and	down	more	slowly	than	a	light	one.	In	fact,	the	mass	m	and	the	force	constant	k	are	the	only	factors	that	affect	the	period	and	frequency	of	simple	harmonic	motion.	The	period	of	a	simple	harmonic	oscillator	is	given	by	[latex]T=2\pi\sqrt{\frac{m}{k}}\\[/latex]	and,
because	[latex]f=\frac{1}{T}\\[/latex],	the	frequency	of	a	simple	harmonic	oscillator	is	[latex]f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}\\[/latex].	Note	that	neither	T	nor	f	has	any	dependence	on	amplitude.	Find	two	identical	wooden	or	plastic	rulers.	Tape	one	end	of	each	ruler	firmly	to	the	edge	of	a	table	so	that	the	length	of	each	ruler	that	protrudes	from
the	table	is	the	same.	On	the	free	end	of	one	ruler	tape	a	heavy	object	such	as	a	few	large	coins.	Pluck	the	ends	of	the	rulers	at	the	same	time	and	observe	which	one	undergoes	more	cycles	in	a	time	period,	and	measure	the	period	of	oscillation	of	each	of	the	rulers.	If	the	shock	absorbers	in	a	car	go	bad,	then	the	car	will	oscillate	at	the	least
provocation,	such	as	when	going	over	bumps	in	the	road	and	after	stopping	(See	Figure	2).	Calculate	the	frequency	and	period	of	these	oscillations	for	such	a	car	if	the	car’s	mass	(including	its	load)	is	900	kg	and	the	force	constant	(k)	of	the	suspension	system	is	6.53	×	104	N/m.	Figure	2.	The	bouncing	car	makes	a	wavelike	motion.	If	the	restoring
force	in	the	suspension	system	can	be	described	only	by	Hooke’s	law,	then	the	wave	is	a	sine	function.	(The	wave	is	the	trace	produced	by	the	headlight	as	the	car	moves	to	the	right.)	Strategy	The	frequency	of	the	car’s	oscillations	will	be	that	of	a	simple	harmonic	oscillator	as	given	in	the	equation	[latex]f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}\\[/latex].
The	mass	and	the	force	constant	are	both	given.	Solution	Enter	the	known	values	of	k	and	m:	[latex]\displaystyle{f}=\frac{1}{2\pi}\sqrt{\frac{k}{m}}=\frac{1}{2\pi}\sqrt{\frac{6.53\times10^4\text{	N/m}}{900\text{	kg}}}\\[/latex]	Calculate	the	frequency:	[latex]\frac{1}
{2\pi}\sqrt{72.6/\text{s}^{-2}}=1.3656/\text{s}^{-1}\approx1.36/\text{s}^{-1}=1.36\text{	Hz}\\[/latex]	You	could	use	[latex]T=2\pi\sqrt{\frac{m}{k}}\\[/latex]	to	calculate	the	period,	but	it	is	simpler	to	use	the	relationship	[latex]T=\frac{1}{f}\\[/latex]	and	substitute	the	value	just	found	for	f:	[latex]\displaystyle{T}=\frac{1}{f}=\frac{1}
{1.356\text{	Hz}}=0.738\text{	s}\\[/latex]	Discussion	The	values	of	T	and	f	both	seem	about	right	for	a	bouncing	car.	You	can	observe	these	oscillations	if	you	push	down	hard	on	the	end	of	a	car	and	let	go.	The	Link	between	Simple	Harmonic	Motion	and	Waves	Figure	3.	The	vertical	position	of	an	object	bouncing	on	a	spring	is	recorded	on	a	strip	of
moving	paper,	leaving	a	sine	wave.	If	a	time-exposure	photograph	of	the	bouncing	car	were	taken	as	it	drove	by,	the	headlight	would	make	a	wavelike	streak,	as	shown	in	Figure	2.	Similarly,	Figure	3	shows	an	object	bouncing	on	a	spring	as	it	leaves	a	wavelike	“trace	of	its	position	on	a	moving	strip	of	paper.	Both	waves	are	sine	functions.	All	simple
harmonic	motion	is	intimately	related	to	sine	and	cosine	waves.	The	displacement	as	a	function	of	time	t	in	any	simple	harmonic	motion—that	is,	one	in	which	the	net	restoring	force	can	be	described	by	Hooke’s	law,	is	given	by	[latex]x(t)=X\cos\frac{2\pi{t}}{T}\\[/latex],	where	X	is	amplitude.	At	t	=	0,	the	initial	position	is	x0	=	X,	and	the
displacement	oscillates	back	and	forth	with	a	period	T.	(When	t	=	T,	we	get	x	=	X	again	because	cos	2π	=	1.).	Furthermore,	from	this	expression	for	x,	the	velocity	v	as	a	function	of	time	is	given	by	[latex]v(t)=-v_{\text{max}}\sin\left(\frac{2\pi{t}}{T}\right)\\[/latex],	where	[latex]v_{\text{max}}=\frac{2\pi{X}}{T}=X\sqrt{\frac{k}{m}}\\[/latex].
The	object	has	zero	velocity	at	maximum	displacement—for	example,	v=0	when	t=0,	and	at	that	time	x=X.	The	minus	sign	in	the	first	equation	for	v(t)	gives	the	correct	direction	for	the	velocity.	Just	after	the	start	of	the	motion,	for	instance,	the	velocity	is	negative	because	the	system	is	moving	back	toward	the	equilibrium	point.	Finally,	we	can	get	an
expression	for	acceleration	using	Newton’s	second	law.	[Then	we	have	x(t),	v(t),	t,	and	a(t),	the	quantities	needed	for	kinematics	and	a	description	of	simple	harmonic	motion.]	According	to	Newton’s	second	law,	the	acceleration	is	[latex]a=\frac{F}{m}=\frac{kx}{m}\\[/latex].	So,	a(t)	is	also	a	cosine	function:	[latex]a(t)=-\frac{kX}
{m}\cos\frac{2\pi{t}}{T}\\[/latex].	Hence,	a(t)	is	directly	proportional	to	and	in	the	opposite	direction	to	a(t).	Figure	4	shows	the	simple	harmonic	motion	of	an	object	on	a	spring	and	presents	graphs	of	x(t),	v(t),	and	a(t)	versus	time.	Figure	4.	Graphs	of	and	versus	t	for	the	motion	of	an	object	on	a	spring.	The	net	force	on	the	object	can	be	described
by	Hooke’s	law,	and	so	the	object	undergoes	simple	harmonic	motion.	Note	that	the	initial	position	has	the	vertical	displacement	at	its	maximum	value	X;	v	is	initially	zero	and	then	negative	as	the	object	moves	down;	and	the	initial	acceleration	is	negative,	back	toward	the	equilibrium	position	and	becomes	zero	at	that	point.	The	most	important	point
here	is	that	these	equations	are	mathematically	straightforward	and	are	valid	for	all	simple	harmonic	motion.	They	are	very	useful	in	visualizing	waves	associated	with	simple	harmonic	motion,	including	visualizing	how	waves	add	with	one	another.	Suppose	you	pluck	a	banjo	string.	You	hear	a	single	note	that	starts	out	loud	and	slowly	quiets	over
time.	Describe	what	happens	to	the	sound	waves	in	terms	of	period,	frequency	and	amplitude	as	the	sound	decreases	in	volume.	Solution	Frequency	and	period	remain	essentially	unchanged.	Only	amplitude	decreases	as	volume	decreases.	Part	2	A	babysitter	is	pushing	a	child	on	a	swing.	At	the	point	where	the	swing	reaches	x,	where	would	the
corresponding	point	on	a	wave	of	this	motion	be	located?	Solution	x	is	the	maximum	deformation,	which	corresponds	to	the	amplitude	of	the	wave.	The	point	on	the	wave	would	either	be	at	the	very	top	or	the	very	bottom	of	the	curve.	A	realistic	mass	and	spring	laboratory.	Hang	masses	from	springs	and	adjust	the	spring	stiffness	and	damping.	You
can	even	slow	time.	Transport	the	lab	to	different	planets.	A	chart	shows	the	kinetic,	potential,	and	thermal	energy	for	each	spring.	Click	to	run	the	simulation.	Selected	Solutions	Simple	harmonic	motion	is	oscillatory	motion	for	a	system	that	can	be	described	only	by	Hooke’s	law.	Such	a	system	is	also	called	a	simple	harmonic	oscillator.	Maximum
displacement	is	the	amplitude	X.	The	period	T	and	frequency	f	of	a	simple	harmonic	oscillator	are	given	by	[latex]T=2\pi\sqrt{\frac{m}{k}}\\[/latex]	and	[latex]f=\frac{1}{2\pi	}\sqrt{\frac{k}{m}}\\[/latex]	,	where	m	is	the	mass	of	the	system.	Displacement	in	simple	harmonic	motion	as	a	function	of	time	is	given	by
[latex]x\left(t\right)=X\text{cos}\frac{2\pi{t}}{T}\\[/latex].	The	velocity	is	given	by	[latex]v\left(t\right)=-{v}_{\text{max}}\text{sin}\frac{2\pi{t}}{T}\\[/latex],	where	[latex]{v}_{\text{max}}=\sqrt{\frac{k}{m}}X\\[/latex].	The	acceleration	is	found	to	be	[latex]a(t)=-\frac{kX}{m}\cos\frac{2\pi{t}}{T}\\[/latex].	Conceptual	Questions	What
conditions	must	be	met	to	produce	simple	harmonic	motion?	(a)	If	frequency	is	not	constant	for	some	oscillation,	can	the	oscillation	be	simple	harmonic	motion?	(b)	Can	you	think	of	any	examples	of	harmonic	motion	where	the	frequency	may	depend	on	the	amplitude?	Give	an	example	of	a	simple	harmonic	oscillator,	specifically	noting	how	its
frequency	is	independent	of	amplitude.	Explain	why	you	expect	an	object	made	of	a	stiff	material	to	vibrate	at	a	higher	frequency	than	a	similar	object	made	of	a	spongy	material.	As	you	pass	a	freight	truck	with	a	trailer	on	a	highway,	you	notice	that	its	trailer	is	bouncing	up	and	down	slowly.	Is	it	more	likely	that	the	trailer	is	heavily	loaded	or	nearly
empty?	Explain	your	answer.	Some	people	modify	cars	to	be	much	closer	to	the	ground	than	when	manufactured.	Should	they	install	stiffer	springs?	Explain	your	answer.	Problems	&	Exercises	A	type	of	cuckoo	clock	keeps	time	by	having	a	mass	bouncing	on	a	spring,	usually	something	cute	like	a	cherub	in	a	chair.	What	force	constant	is	needed	to
produce	a	period	of	0.500	s	for	a	0.0150-kg	mass?	If	the	spring	constant	of	a	simple	harmonic	oscillator	is	doubled,	by	what	factor	will	the	mass	of	the	system	need	to	change	in	order	for	the	frequency	of	the	motion	to	remain	the	same?	A	0.500-kg	mass	suspended	from	a	spring	oscillates	with	a	period	of	1.50	s.	How	much	mass	must	be	added	to	the
object	to	change	the	period	to	2.00	s?	By	how	much	leeway	(both	percentage	and	mass)	would	you	have	in	the	selection	of	the	mass	of	the	object	in	the	previous	problem	if	you	did	not	wish	the	new	period	to	be	greater	than	2.01	s	or	less	than	1.99	s?	Suppose	you	attach	the	object	with	mass	m	to	a	vertical	spring	originally	at	rest,	and	let	it	bounce	up
and	down.	You	release	the	object	from	rest	at	the	spring’s	original	rest	length.	(a)	Show	that	the	spring	exerts	an	upward	force	of	2.00	mg	on	the	object	at	its	lowest	point.	(b)	If	the	spring	has	a	force	constant	of	10.0	N/m	and	a	0.25-kg-mass	object	is	set	in	motion	as	described,	find	the	amplitude	of	the	oscillations.	(c)	Find	the	maximum	velocity.	A
diver	on	a	diving	board	is	undergoing	simple	harmonic	motion.	Her	mass	is	55.0	kg	and	the	period	of	her	motion	is	0.800	s.	The	next	diver	is	a	male	whose	period	of	simple	harmonic	oscillation	is	1.05	s.	What	is	his	mass	if	the	mass	of	the	board	is	negligible?	Suppose	a	diving	board	with	no	one	on	it	bounces	up	and	down	in	a	simple	harmonic	motion
with	a	frequency	of	4.00	Hz.	The	board	has	an	effective	mass	of	10.0	kg.	What	is	the	frequency	of	the	simple	harmonic	motion	of	a	75.0-kg	diver	on	the	board?	The	device	pictured	in	Figure	6	entertains	infants	while	keeping	them	from	wandering.	The	child	bounces	in	a	harness	suspended	from	a	door	frame	by	a	spring	constant.	Figure	6.	This	child’s
toy	relies	on	springs	to	keep	infants	entertained.	(credit:	By	Humboldthead,	Flickr)	(a)	If	the	spring	stretches	0.250	m	while	supporting	an	8.0-kg	child,	what	is	its	spring	constant?	(b)	What	is	the	time	for	one	complete	bounce	of	this	child?	(c)	What	is	the	child’s	maximum	velocity	if	the	amplitude	of	her	bounce	is	0.200	m?	A	90.0-kg	skydiver	hanging
from	a	parachute	bounces	up	and	down	with	a	period	of	1.50	s.	What	is	the	new	period	of	oscillation	when	a	second	skydiver,	whose	mass	is	60.0	kg,	hangs	from	the	legs	of	the	first,	as	seen	in	Figure	7.	Figure	7.	The	oscillations	of	one	skydiver	are	about	to	be	affected	by	a	second	skydiver.	(credit:	U.S.	Army,	www.army.mil)	amplitude:	the	maximum
displacement	from	the	equilibrium	position	of	an	object	oscillating	around	the	equilibrium	position	simple	harmonic	motion:	the	oscillatory	motion	in	a	system	where	the	net	force	can	be	described	by	Hooke’s	law	simple	harmonic	oscillator:	a	device	that	implements	Hooke’s	law,	such	as	a	mass	that	is	attached	to	a	spring,	with	the	other	end	of	the
spring	being	connected	to	a	rigid	support	such	as	a	wall	1.	2.37	N/m	3.	0.389	kg	6.	94.7	kg	9.	1.94	s


