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Open-source	data	analytics	cluster	computing	frameworkApache	SparkOriginal	author(s)Matei	ZahariaDeveloper(s)Apache	SparkInitial	releaseMay26,	2014;	10	years	ago(2014-05-26)Stable	release3.5.4	(Scala	2.13)	/	December20,	2024;	5	months	ago(2024-12-20)RepositorySpark	RepositoryWritten	inScala[1]Operating	systemMicrosoft	Windows,
macOS,	LinuxAvailable	inScala,	Java,	SQL,	Python,	R,	C#,	F#TypeData	analytics,	machine	learning	algorithmsLicenseApache	License	2.0Websitespark.apache.org	Apache	Spark	is	an	open-source	unified	analytics	engine	for	large-scale	data	processing.	Spark	provides	an	interface	for	programming	clusters	with	implicit	data	parallelism	and	fault
tolerance.	Originally	developed	at	the	University	of	California,	Berkeley's	AMPLab	starting	in	2009,	in	2013,	the	Spark	codebase	was	donated	to	the	Apache	Software	Foundation,	which	has	maintained	it	since.Apache	Spark	has	its	architectural	foundation	in	the	resilient	distributed	dataset	(RDD),	a	read-only	multiset	of	data	items	distributed	over	a
cluster	of	machines,	that	is	maintained	in	a	fault-tolerant	way.[2]	The	Dataframe	API	was	released	as	an	abstraction	on	top	of	the	RDD,	followed	by	the	Dataset	API.	In	Spark	1.x,	the	RDD	was	the	primary	application	programming	interface	(API),	but	as	of	Spark	2.x	use	of	the	Dataset	API	is	encouraged[3]	even	though	the	RDD	API	is	not	deprecated.[4]
[5]	The	RDD	technology	still	underlies	the	Dataset	API.[6][7]Spark	and	its	RDDs	were	developed	in	2012	in	response	to	limitations	in	the	MapReduce	cluster	computing	paradigm,	which	forces	a	particular	linear	dataflow	structure	on	distributed	programs:	MapReduce	programs	read	input	data	from	disk,	map	a	function	across	the	data,	reduce	the
results	of	the	map,	and	store	reduction	results	on	disk.	Spark's	RDDs	function	as	a	working	set	for	distributed	programs	that	offers	a	(deliberately)	restricted	form	of	distributed	shared	memory.[8]Inside	Apache	Spark	the	workflow	is	managed	as	a	directed	acyclic	graph	(DAG).	Nodes	represent	RDDs	while	edges	represent	the	operations	on	the
RDDs.Spark	facilitates	the	implementation	of	both	iterative	algorithms,	which	visit	their	data	set	multiple	times	in	a	loop,	and	interactive/exploratory	data	analysis,	i.e.,	the	repeated	database-style	querying	of	data.	The	latency	of	such	applications	may	be	reduced	by	several	orders	of	magnitude	compared	to	Apache	Hadoop	MapReduce
implementation.[2][9]Among	the	class	of	iterative	algorithms	are	the	training	algorithms	for	machine	learning	systems,	which	formed	the	initial	impetus	for	developing	Apache	Spark.[10]Apache	Spark	requires	a	cluster	manager	and	a	distributed	storage	system.	For	cluster	management,	Spark	supports	standalone	native	Spark,	Hadoop	YARN,
Apache	Mesos	or	Kubernetes.[11]	A	standalone	native	Spark	cluster	can	be	launched	manually	or	by	the	launch	scripts	provided	by	the	install	package.	It	is	also	possible	to	run	the	daemons	on	a	single	machine	for	testing.	For	distributed	storage	Spark	can	interface	with	a	wide	variety	of	distributed	systems,	including	Alluxio,	Hadoop	Distributed	File
System	(HDFS),[12]	MapR	File	System	(MapR-FS),[13]	Cassandra,[14]	OpenStack	Swift,	Amazon	S3,	Kudu,	Lustre	file	system,[15]	or	a	custom	solution	can	be	implemented.	Spark	also	supports	a	pseudo-distributed	local	mode,	usually	used	only	for	development	or	testing	purposes,	where	distributed	storage	is	not	required	and	the	local	file	system
can	be	used	instead;	in	such	a	scenario,	Spark	is	run	on	a	single	machine	with	one	executor	per	CPU	core.Spark	Core	is	the	foundation	of	the	overall	project.	It	provides	distributed	task	dispatching,	scheduling,	and	basic	I/O	functionalities,	exposed	through	an	application	programming	interface	(for	Java,	Python,	Scala,	.NET[16]	and	R)	centered	on
the	RDD	abstraction	(the	Java	API	is	available	for	other	JVM	languages,	but	is	also	usable	for	some	other	non-JVM	languages	that	can	connect	to	the	JVM,	such	as	Julia[17]).	This	interface	mirrors	a	functional/higher-order	model	of	programming:	a	"driver"	program	invokes	parallel	operations	such	as	map,	filter	or	reduce	on	an	RDD	by	passing	a
function	to	Spark,	which	then	schedules	the	function's	execution	in	parallel	on	the	cluster.[2]	These	operations,	and	additional	ones	such	as	joins,	take	RDDs	as	input	and	produce	new	RDDs.	RDDs	are	immutable	and	their	operations	are	lazy;	fault-tolerance	is	achieved	by	keeping	track	of	the	"lineage"	of	each	RDD	(the	sequence	of	operations	that
produced	it)	so	that	it	can	be	reconstructed	in	the	case	of	data	loss.	RDDs	can	contain	any	type	of	Python,	.NET,	Java,	or	Scala	objects.Besides	the	RDD-oriented	functional	style	of	programming,	Spark	provides	two	restricted	forms	of	shared	variables:	broadcast	variables	reference	read-only	data	that	needs	to	be	available	on	all	nodes,	while
accumulators	can	be	used	to	program	reductions	in	an	imperative	style.[2]A	typical	example	of	RDD-centric	functional	programming	is	the	following	Scala	program	that	computes	the	frequencies	of	all	words	occurring	in	a	set	of	text	files	and	prints	the	most	common	ones.	Each	map,	flatMap	(a	variant	of	map)	and	reduceByKey	takes	an	anonymous
function	that	performs	a	simple	operation	on	a	single	data	item	(or	a	pair	of	items),	and	applies	its	argument	to	transform	an	RDD	into	a	new	RDD.val	conf	=	new	SparkConf().setAppName("wiki_test")	//	create	a	spark	config	objectval	sc	=	new	SparkContext(conf)	//	Create	a	spark	contextval	data	=	sc.textFile("/path/to/somedir")	//	Read	files	from
"somedir"	into	an	RDD	of	(filename,	content)	pairs.val	tokens	=	data.flatMap(_.split("	"))	//	Split	each	file	into	a	list	of	tokens	(words).val	wordFreq	=	tokens.map((_,	1)).reduceByKey(_	+	_)	//	Add	a	count	of	one	to	each	token,	then	sum	the	counts	per	word	type.wordFreq.sortBy(s	=>	-s._2).map(x	=>	(x._2,	x._1)).top(10)	//	Get	the	top	10	words.	Swap
word	and	count	to	sort	by	count.Spark	SQL	is	a	component	on	top	of	Spark	Core	that	introduced	a	data	abstraction	called	DataFrames,[a]	which	provides	support	for	structured	and	semi-structured	data.	Spark	SQL	provides	a	domain-specific	language	(DSL)	to	manipulate	DataFrames	in	Scala,	Java,	Python	or	.NET.[16]	It	also	provides	SQL	language
support,	with	command-line	interfaces	and	ODBC/JDBC	server.	Although	DataFrames	lack	the	compile-time	type-checking	afforded	by	RDDs,	as	of	Spark	2.0,	the	strongly	typed	DataSet	is	fully	supported	by	Spark	SQL	as	well.import	org.apache.spark.sql.SparkSessionval	url	=	"jdbc:mysql://yourIP:yourPort/test?
user=yourUsername;password=yourPassword"	//	URL	for	your	database	server.val	spark	=	SparkSession.builder().getOrCreate()	//	Create	a	Spark	session	objectval	df	=	spark	.read	.format("jdbc")	.option("url",	url)	.option("dbtable",	"people")	.load()df.printSchema()	//	Looks	at	the	schema	of	this	DataFrame.val	countsByAge	=
df.groupBy("age").count()	//	Counts	people	by	ageOr	alternatively	via	SQL:df.createOrReplaceTempView("people")val	countsByAge	=	spark.sql("SELECT	age,	count(*)	FROM	people	GROUP	BY	age")Spark	Streaming	uses	Spark	Core's	fast	scheduling	capability	to	perform	streaming	analytics.	It	ingests	data	in	mini-batches	and	performs	RDD
transformations	on	those	mini-batches	of	data.	This	design	enables	the	same	set	of	application	code	written	for	batch	analytics	to	be	used	in	streaming	analytics,	thus	facilitating	easy	implementation	of	lambda	architecture.[19][20]	However,	this	convenience	comes	with	the	penalty	of	latency	equal	to	the	mini-batch	duration.	Other	streaming	data
engines	that	process	event	by	event	rather	than	in	mini-batches	include	Storm	and	the	streaming	component	of	Flink.[21]	Spark	Streaming	has	support	built-in	to	consume	from	Kafka,	Flume,	Twitter,	ZeroMQ,	Kinesis,	and	TCP/IP	sockets.[22]In	Spark	2.x,	a	separate	technology	based	on	Datasets,	called	Structured	Streaming,	that	has	a	higher-level
interface	is	also	provided	to	support	streaming.[23]Spark	can	be	deployed	in	a	traditional	on-premises	data	center	as	well	as	in	the	cloud.[24]Spark	MLlib	is	a	distributed	machine-learning	framework	on	top	of	Spark	Core	that,	due	in	large	part	to	the	distributed	memory-based	Spark	architecture,	is	as	much	as	nine	times	as	fast	as	the	disk-based
implementation	used	by	Apache	Mahout	(according	to	benchmarks	done	by	the	MLlib	developers	against	the	alternating	least	squares	(ALS)	implementations,	and	before	Mahout	itself	gained	a	Spark	interface),	and	scales	better	than	Vowpal	Wabbit.[25]	Many	common	machine	learning	and	statistical	algorithms	have	been	implemented	and	are
shipped	with	MLlib	which	simplifies	large	scale	machine	learning	pipelines,	including:summary	statistics,	correlations,	stratified	sampling,	hypothesis	testing,	random	data	generation[26]classification	and	regression:	support	vector	machines,	logistic	regression,	linear	regression,	naive	Bayes	classification,	Decision	Tree,	Random	Forest,	Gradient-
Boosted	Treecollaborative	filtering	techniques	including	alternating	least	squares	(ALS)cluster	analysis	methods	including	k-means,	and	latent	Dirichlet	allocation	(LDA)dimensionality	reduction	techniques	such	as	singular	value	decomposition	(SVD),	and	principal	component	analysis	(PCA)feature	extraction	and	transformation	functionsoptimization
algorithms	such	as	stochastic	gradient	descent,	limited-memory	BFGS	(L-BFGS)GraphX	is	a	distributed	graph-processing	framework	on	top	of	Apache	Spark.	Because	it	is	based	on	RDDs,	which	are	immutable,	graphs	are	immutable	and	thus	GraphX	is	unsuitable	for	graphs	that	need	to	be	updated,	let	alone	in	a	transactional	manner	like	a	graph
database.[27]	GraphX	provides	two	separate	APIs	for	implementation	of	massively	parallel	algorithms	(such	as	PageRank):	a	Pregel	abstraction,	and	a	more	general	MapReduce-style	API.[28]	Unlike	its	predecessor	Bagel,	which	was	formally	deprecated	in	Spark	1.6,	GraphX	has	full	support	for	property	graphs	(graphs	where	properties	can	be
attached	to	edges	and	vertices).[29]Like	Apache	Spark,	GraphX	initially	started	as	a	research	project	at	UC	Berkeley's	AMPLab	and	Databricks,	and	was	later	donated	to	the	Apache	Software	Foundation	and	the	Spark	project.[30]Apache	Spark	has	built-in	support	for	Scala,	Java,	SQL,	R,	and	Python	with	3rd	party	support	for	the	.NET	CLR,[31]	Julia,
[32]	and	more.Spark	was	initially	started	by	Matei	Zaharia	at	UC	Berkeley's	AMPLab	in	2009,	and	open	sourced	in	2010	under	a	BSD	license.[33]In	2013,	the	project	was	donated	to	the	Apache	Software	Foundation	and	switched	its	license	to	Apache	2.0.	In	February	2014,	Spark	became	a	Top-Level	Apache	Project.[34]In	November	2014,	Spark
founder	M.	Zaharia's	company	Databricks	set	a	new	world	record	in	large	scale	sorting	using	Spark.[35][33]Spark	had	in	excess	of	1000	contributors	in	2015,[36]	making	it	one	of	the	most	active	projects	in	the	Apache	Software	Foundation[37]	and	one	of	the	most	active	open	source	big	data	projects.VersionOriginal	release	dateLatest	versionRelease
dateOld	version,	not	maintained:	0.52012-06-120.5.22012-11-22Old	version,	not	maintained:	0.62012-10-150.6.22013-02-07Old	version,	not	maintained:	0.72013-02-270.7.32013-07-16Old	version,	not	maintained:	0.82013-09-250.8.12013-12-19Old	version,	not	maintained:	0.92014-02-020.9.22014-07-23Old	version,	not	maintained:	1.02014-05-
261.0.22014-08-05Old	version,	not	maintained:	1.12014-09-111.1.12014-11-26Old	version,	not	maintained:	1.22014-12-181.2.22015-04-17Old	version,	not	maintained:	1.32015-03-131.3.12015-04-17Old	version,	not	maintained:	1.42015-06-111.4.12015-07-15Old	version,	not	maintained:	1.52015-09-091.5.22015-11-09Old	version,	not	maintained:
1.62016-01-041.6.32016-11-07Old	version,	not	maintained:	2.02016-07-262.0.22016-11-14Old	version,	not	maintained:	2.12016-12-282.1.32018-06-26Old	version,	not	maintained:	2.22017-07-112.2.32019-01-11Old	version,	not	maintained:	2.32018-02-282.3.42019-09-09Old	version,	not	maintained:	2.4	LTS2018-11-022.4.82021-05-17[38]Old	version,
not	maintained:	3.02020-06-183.0.32021-06-01[39]Old	version,	not	maintained:	3.12021-03-023.1.32022-02-18[40]Old	version,	not	maintained:	3.22021-10-133.2.42023-04-13[41]Old	version,	still	maintained:	3.32022-06-163.3.32023-08-21[42]Old	version,	still	maintained:	3.42023-04-133.4.32024-04-18[43]Latest	version:	3.52023-09-093.5.22024-08-
10[44]Legend:Old	version,	not	maintainedOld	version,	still	maintainedLatest	versionLatest	preview	versionFuture	versionSpark	3.5.2	is	based	on	Scala	2.13	(and	thus	works	with	Scala	2.12	and	2.13	out-of-the-box),	but	it	can	also	be	made	to	work	with	Scala	3.[45]Apache	Spark	is	developed	by	a	community.	The	project	is	managed	by	a	group	called
the	"Project	Management	Committee"	(PMC).[46]Feature	release	branches	will,	generally,	be	maintained	with	bug	fix	releases	for	a	period	of	18	months.	For	example,	branch	2.3.x	is	no	longer	considered	maintained	as	of	September	2019,	18	months	after	the	release	of	2.3.0	in	February	2018.	No	more	2.3.x	releases	should	be	expected	after	that
point,	even	for	bug	fixes.The	last	minor	release	within	a	major	a	release	will	typically	be	maintained	for	longer	as	an	LTS	release.	For	example,	2.4.0	was	released	on	November	2,	2018,	and	had	been	maintained	for	31	months	until	2.4.8	was	released	in	May	2021.	2.4.8	is	the	last	release	and	no	more	2.4.x	releases	should	be	expected	even	for	bug
fixes.[47]Big	dataDistributed	computingDistributed	data	processingList	of	Apache	Software	Foundation	projectsList	of	concurrent	and	parallel	programming	languagesMapReduce^	Called	SchemaRDDs	before	Spark	1.3[18]^	"Spark	Release	2.0.0".	MLlib	in	R:	SparkR	now	offers	MLlib	APIs	[..]	Python:	PySpark	now	offers	many	more	MLlib
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"Apache	Committee	Information".^	"Versioning	policy".	spark.apache.org.Official	website	Retrieved	from	"	by	Markus	Winkler	on	UnsplashThis	is	the	first	part	of	a	collection	of	examples	of	how	to	use	the	MLlib	Spark	library	with	Python.	The	content	in	this	post	is	a	conversion	of	this	Jupyter	notebook.This	notebook	is	a	collection	of	examples	that
illustrate	how	to	use	PySpark	with	MLlib.	This	whole	collection	of	examples	is	intended	to	be	a	gentle	introduction	to	those	interested	in	the	topic,	want	to	have	additional	examples,	or	simply	are	curious	about	how	to	start	with	this	library.The	following	skills	are	expected	to	follow	these	examples:PythonUnderstanding	Spark	structures	(Dataframes,
RDD)Basic	ML	notions.	This	is	not	intended	to	be	a	ML	course	although,	you	can	find	some	theoretical	explanations.The	examples	are	designed	to	work	with	a	simple	local	environment	using	the	MLlib	Dataframe.	The	MLlib	RDD-based	API	is	now	in	maintenance	(see	here).	This	is	why	you	will	see	that	the	main	import	statement	comes	from
pyspark.ml	not	pyspark.mllib.You	will	need	a	spark	environment	to	be	available	in	your	local	path.	Refer	here	to	the	official	guide	for	more	details.You	will	need	java	to	be	available	on	your	local	path.	Check	it	out	running	java	--version.	If	nothing	is	displayed,	check	out	how	to	install	Java	on	your	machine	(here).	Next,	you	can	easily	set	up	a	local
environment	and	install	the	dependencies	used	in	this	notebook.virtualenv	envsource	env/bin/activatepip	install	urllib3	numpy	matplotlib	pysparkWait	until	the	dependencies	are	already	satisfied.	If	you	are	not	reading	these	lines	from	a	Jupyter	Notebook	:)	install	and	run	it.pip	install	jupyterjupyter-notebookSpark	Dataframes	support	a	collection	of
rows	containing	elements	with	different	data	types.	In	the	context	of	ML	algorithms,	data	types	such	as	boolean,	string	or	even	integer	are	not	the	expected	input	for	most	ML	algorithms.	In	this	sense,	MLlib	supports	data	types	such	as	vectors	or	matrices.2.1	Dense	VectorsA	dense	vector	is	an	array.	PySpark	uses	numpy	to	run	algebraical
operations.Docsfrom	pyspark.ml.linalg	import	DenseVectora	=	DenseVector([0,1,2,3,4])b	=	DenseVector([10,10,10,10,10])print('Sum:	',	a	+	b)print('Difference:	',	a	-	b)print('Multiplication:	',	a	*	2)print('Division:	',	b	/	2)print('Non-zeros:	',	a.nonzero())print('Squared	distance:	',	a.squared_distance(b))Sum:	[10.0,11.0,12.0,13.0,14.0]Difference:
[-10.0,-9.0,-8.0,-7.0,-6.0]Multiplication:	[0.0,2.0,4.0,6.0,8.0]Division:	[5.0,5.0,5.0,5.0,5.0]Non-zeros:	(array([1,	2,	3,	4]),)Squared	distance:	330.02.2	Sparse	VectorsSparse	vectors	are	designed	to	represent	those	vectors	where	a	large	number	of	elements	is	expected	to	be	zero.	These	vectors	are	defined	by	specifying	which	positions	of	the	array	are
different	from	zero	and	the	assigned	values.	In	the	following	vector:SparseVector	(5	,[0	,2	,4]	,[1	,3	,5])we	have	five	elements	with	entries	0,	2,	and	4	take	values	1,	3,	and	5.Docsfrom	pyspark.ml.linalg	import	SparseVectorsparse_vector	=	SparseVector	(5	,[0	,2	,4]	,[1	,3	,5])print('Sparse	vector:	',	sparse_vector.toArray	())print('Indices:	',
sparse_vector.indices	)print('Non	zeros:	',	sparse_vector.numNonzeros	())Sparse	vector:	[1.	0.	3.	0.	5.]Indices:	[0	2	4]Non	zeros:	3We	can	expect	datasets	to	be	available	from	different	storage	sources:Hard	disksHDFSDatabasesOthersThe	SparkSession	object	facilitates	the	load	of	data	from	these	sources	under	different	formats	(CSV,	JSON,	text,
parquet,	databases,	etc.).	We	will	show	examples	for	CSV,	libSVM,	and	images.3.1	CSVLets	assume	the	following	dataset	in	a	CSV	format:csvlabel,f1,f2,f3,f40,0,"one",2.0,true1,4,"five",6.0,falseWe	instantiate	a	SparkSession	object	and	load	the	dataset	indicating	that	we	have	a	header	and	the	separation	character.'''For	this	example	we	need	the
dataset.csv	file	to	be	available.	Copy	and	paste	the	following	lines:echo	"\label,f1,f2,f3,f40,0,"one",2.0,true1,4,"five",6.0,false"	>	/tmp/dataset.csv'''from	pyspark.sql	import	SparkSession#	Get	a	session	object	for	our	current	Spark	mastersession	=	SparkSession.builder.appName("Example").master("local").getOrCreate()dataset	=
session.read.format('csv')\.option('header',	'true')\.option('sep',	',')\.load('/tmp/dataset.csv')dataset.show()#	we	stop	the	sessionsession.stop()+-----+---+----+---+-----+|label|	f1|	f2|	f3|	f4|+-----+---+----+---+-----+|	0|	0|	one|2.0|	true||	1|	4|five|6.0|false|+-----+---+----+---+-----+3.2	libSVMLibSVM	is	a	popular	format	to	represent	numeric	sparse	data.The
following	dataset:0	128:51	129:1591	130:253	131:159	132:501	155:48	156:238Where	the	first	row	0	128:51	129:159	indicates	an	observation	with	label	0	and	feature	128th	and	129th	equal	to	51	and	159	respectively.	We	can	load	this	dataset	using	the	SparkSession	object	as	we	did	for	the	CSV	format.'''For	this	example	we	need	the	dataset.libsvm
file	to	be	available.	Copy	and	paste	the	following	lines:echo	"\0	128:51	129:1591	130:253	131:159	132:501	155:48	156:238"	>	/tmp/dataset.libsvm'''from	pyspark.sql	import	SparkSessionsession	=	SparkSession.builder.appName("Example").master("local").getOrCreate()dataset	=
session.read.format('libsvm').option('numFeatures',157).load('/tmp/dataset.libsvm')dataset.show()	#	we	stop	the	sessionsession.stop()+-----+--------------------+|label|	features|+-----+--------------------+|	0.0|(157,[127,128],[5...||	1.0|(157,[129,130,131...||	1.0|(157,[154,155],[4...|+-----+--------------------+3.3	ImagesLMlib	can	load	images	in	variety	of	formats	(jpeg,
png,	etc.).	It	also	supports	compressed	formats.	The	resulting	DataFrame	has	a	column	image	containing	information	of	the	schema.More	details	in	the	docs.#	We	download	a	cat	image	for	laterimport	urllib3import	tempfilefrom	IPython.display	import	Imageimport	sysurl='	=	tempfile.gettempdir()	+	'/kitty.png'http	=	urllib3.PoolManager()r	=
http.request('GET',	url,	preload_content=False)	with	open(cat_image,	'wb')	as	f:	while	True:	data	=	r.read()	if	not	data:	break	f.write(data)r.release_conn()Image(filename=cat_image)from	pyspark.sql	import	SparkSessionsession	=	SparkSession.builder.appName('Example').master('local').getOrCreate()df	=
session.read.format('image').option('dropInvalid',	True).load(cat_image)df.select('image.origin',	'image.width',	'image.height',	'image.nChannels',	'image.mode').show(truncate=False)#	The	image	data	is	stored	in	the	image.data	column,	one	image	per	row.img_data	=	df.select('image.data').collect()[0]#	Do	something	with	img_data...session.stop()+----
-----------------+-----+------+---------+----+|origin	|width|height|nChannels|mode|+---------------------+-----+------+---------+----+|file:///tmp/kitty.png|640	|960	|3	|16	|+---------------------+-----+------+---------+----+One	of	the	main	tasks	for	any	data	engineer	is	data	preparation.	For	two	reasons:Raw	data	is	not	ready	to	be	consumed	by	algorithmsPreprocessing	data	is
required	to	improve	algorithms	performanceIncoming	data	has	to	be	processed	in	different	steps	until	we	reach	a	successful	representation	to	be	consumed	by	algorithms.	MLlib	offers	a	collection	of	feature-related	operations.	We	can	distinguish:Extraction:	extract	features	from	raw	dataTransformation:	modifying/converting	featuresSelection:	select
features	based	on	a	certain	criteriaLocality	Sensitive	Hashing	(LSH):	algorithms	combining	feature	transformation	with	other	algorithmsIn	general	feature	processing	in	MLlib	follows	these	steps:Instantiate	the	operator	indicating	the	name	of	the	input	and	output	columns	and	additional	params.Fit	the	model	invoking	the	.fit(...)	method	to	train	a
model.	Some	operators	may	not	require	this	step	if	they	are	not	associated	with	a	model.Transform	the	input	data	using	the	modelNo	need	to	mention	that	these	steps,	the	input	params,	and	the	input	format	vary	from	operator	to	operator.The	following	sections	present	succint	examples	of	different	operators.4.1	Normal	standardizationScale	a	feature
to	obtain	a	normal	distribution	with	mean	0	and	unit-variance.from	pyspark.sql	import	SparkSessionfrom	pyspark.ml.linalg	import	Vectorsfrom	pyspark.ml.feature	import	StandardScalersession	=	SparkSession.builder.appName('Example').master('local').getOrCreate()values	=	[[0,	Vectors	.dense	([1.0,0.1,	-1.0])],	[1,	Vectors	.dense	([2.0	,1.1	,1.0])]	,
[2,	Vectors	.dense	([3.0	,10.1	,3.0])]]dataset	=	session.createDataFrame(values,	['id',	'features'])dataset.show()+---+--------------+|	id|	features|+---+--------------+|	0|[1.0,0.1,-1.0]||	1|	[2.0,1.1,1.0]||	2|[3.0,10.1,3.0]|+---+--------------+#	Fitscaler	=	StandardScaler(inputCol	=	'features',	outputCol='standardized',	withMean=True,	withStd=True)scalerModel	=
scaler.fit(dataset)#	Print	some	statisticsprint("Mean	is:	%s	with	sd:	%s"	%	(scalerModel.mean,	scalerModel.std))#	Transformstandardized	=	scalerModel.transform(dataset)standardized.show()Mean	is:	[2.0,3.7666666666666666,1.0]	with	sd:	[1.0,5.507570547286102,2.0]+---+--------------+--------------------+|	id|	features|	standardized|+---+--------------+--------
------------+|	0|[1.0,0.1,-1.0]|[-1.0,-0.66575028...||	1|	[2.0,1.1,1.0]|[0.0,-0.484182026...||	2|[3.0,10.1,3.0]|[1.0,1.1499323120...|+---+--------------+--------------------+We	can	check	if	the	transformed	data	has	the	desired	distribution	using	a	Summarizer	(docs	here).	For	every	feature	we	have	mean	set	to	0	and	standard	deviation	equal	to	1.#	Let's	see	what	are
the	mean	and	the	std	nowfrom	pyspark.ml.stat	import	Summarizersummarizer	=	Summarizer.metrics("mean",	"std")standardized.select(summarizer.summary(standardized.standardized)).show(truncate=False)session.stop()+---------------------------------------------+|aggregate_metrics(standardized,	1.0)	|+---------------------------------------------+|{[0.0,0.0,0.0],
[1.0,0.9999999999999999,1.0]}|+---------------------------------------------+4.2	Elementwise	productThis	transformer	multiplies	each	input	vector	by	a	provided	vector,	using	element-wise	multiplication.	This	operation	scales	each	column	by	a	given	scalar	(Hadamard	product).from	pyspark.sql	import	SparkSessionfrom	pyspark.ml.linalg	import	Vectorsfrom
pyspark.ml.feature	import	ElementwiseProductsession	=	SparkSession.builder.appName('Example').master('local').getOrCreate()a	=	[[Vectors.dense	([2,3,1])],	[Vectors.dense	([0,8,-2])]]b	=	Vectors.dense	([3,1,4])print('b	=',b)df_a	=	session.createDataFrame(a,	['features'])df_a.show()ewp	=	ElementwiseProduct(inputCol='features',
outputCol='product',	scalingVec=b)a_b	=	ewp.transform(df_a)a_b.show()b	=	[3.0,1.0,4.0+--------------+|	features|+--------------+|	[2.0,3.0,1.0]||[0.0,8.0,-2.0]|+--------------++--------------+--------------+|	features|	product|+--------------+--------------+|	[2.0,3.0,1.0]|	[6.0,3.0,4.0]||[0.0,8.0,-2.0]|[0.0,8.0,-8.0]|+--------------+--------------+4.3	Principal	Component	AnalysisWhen
dealing	with	many	features	we	can	come	across	the	curse	of	dimensionality.More	than	three	variables	are	difficult	to	plotPerformance	issues	for	a	large	number	of	featuresFeatures	that	only	add	noise	to	the	problemAlgorithms	may	find	difficult	to	converge	to	a	solutionPrincipal	Component	Analysis	(PCA)	is	a	dimensionality	reduction	technique	that
aims	to	find	the	components	that	maximize	the	variance.	These	are	the	steps	to	follow:Standardize	the	dataCompute	eigenvectors	and	eigenvalues	of	the	covariance	matrixSort	eigenvalues	and	pick	the	d	largest	valuesConstruct	matrix	W	using	the	d	corresponding	eigenvectorsTransform	dataset	X	multiplying	it	by	WIn	MLlib	there	is	a	PCA
transformer	that	implements	all	these	steps.	By	applying	the	PCA	we	can	obtain	a	reduced	version	of	the	original	that	maintains	most	of	the	relevant	information	brought	by	the	features.In	the	example	below,	we	compute	the	PCA	for	a	dataset	of	5	features	we	wish	to	convert	in	a	new	3	features	dataset.from	pyspark.sql	import	SparkSessionfrom
pyspark.ml.linalg	import	Vectorsfrom	pyspark.ml.feature	import	PCAsession	=	SparkSession.builder.appName("Example").master("local").getOrCreate()data	=	[[Vectors.dense	([1.0	,	0.0,	3.0,	0.0,	7.0])],	[Vectors	.dense	([2.0	,	0.0,	3.0,	4.0,	5.0])],	[Vectors	.dense	([4.0	,	0.0,	0.0,	6.0,	7.0])]]dataset	=	session.createDataFrame(data,
['features'])dataset.show()+--------------------+|	features|+--------------------+|[1.0,0.0,3.0,0.0,...||[2.0,0.0,3.0,4.0,...||[4.0,0.0,0.0,6.0,...|+--------------------+#	Fit	PCApca	=	PCA(inputCol='features',	outputCol='pcaFeatures',	k=3)pcaModel	=	pca.fit(dataset)print("The	variance	for	every	new	feature	%s"	%	pcaModel.explainedVariance)The	variance	for	every	new
feature	[0.84375,0.15625000000000008,4.509331675237028e-17]The	variance	for	every	new	feature	[0.84375,0.15625000000000008,4.509331675237028e-17#	Transform	the	original	datasetpcaDataset	=	pcaModel.transform(dataset)pcaDataset.show(truncate=False)+---------------------+---------------------------------------------------------+|features	|pcaFeatures
|+---------------------+---------------------------------------------------------+|[1.0,0.0,3.0,0.0,7.0]|[0.8164965809277265,3.65148371670111,-2.5144734900027204]||[2.0,0.0,3.0,4.0,5.0]|[-2.857738033247042,0.9128709291752779,-2.51447349000272]||[4.0,0.0,0.0,6.0,7.0]|[-6.53197264742181,3.6514837167011094,-2.514473490002719]|+---------------------+----------------------
-----------------------------------+Observe	that	the	transformed	dataset	does	no	longer	correspond	to	any	real	observation.	Any	model	predictions	generated	using	this	transformed	data	for	training,	has	to	be	reconstructed.	Otherwise,	the	output	will	no	make	any	sense.4.4	StringIndexerThis	is	a	label	indexer	that	assigns	a	label	to	every	string	in	a	column.	If
the	value	is	numeric,	first	it	is	casted	to	string	and	then	indexed.from	pyspark.sql	import	SparkSessionfrom	pyspark.ml.linalg	import	Vectorsfrom	pyspark.ml.feature	import	StringIndexersession	=	SparkSession.builder.appName('Example').master('local').getOrCreate()data	=	session.createDataFrame([['blue'],	['red'],	['red'],	['white'],	['yellow'],
['red']],	['feature'])data.show()si	=	StringIndexer(inputCol='feature',	outputCol='index',	)model	=	si.fit(data)print('Found	labels:	',	model.labels)model.transform(data).show()session.stop()+-------+|feature|+-------+|	blue||	red||	red||	white||	yellow||	red|+-------+Found	labels:	['red',	'blue',	'white',	'yellow']+-------+-----+|feature|index|+-------+-----+|	blue|	1.0||
red|	0.0||	red|	0.0||	white|	2.0||	yellow|	3.0||	red|	0.0|+-------+-----+4.4	One	hot	encoderThis	encoder	maps	a	column	of	indices	into	a	single	binary	vector.	If	we	have	4	labels,	for	index	3	we	will	have	[0,0,0,1,0].	The	output	is	a	SparseVector.Observe	that	the	param	dropLast	is	True	by	default	ignoring	the	label	with	index	n-1.from	pyspark.sql	import
SparkSessionfrom	pyspark.ml.linalg	import	Vectorsfrom	pyspark.ml.feature	import	StringIndexer,	OneHotEncodersession	=	SparkSession.builder.appName('Example').master('local').getOrCreate()data	=	session.createDataFrame([['blue'],	['red'],	['red'],	['white'],	['yellow'],	['red']],	['feature'])data.show()#	First	we	need	an	input	column	with	indices
instead	of	strings.si	=	StringIndexer(inputCol='feature',	outputCol='indexed')si_model	=	si.fit(data)indexed	=	si_model.transform(data)indexed.show()#	If	we	let	dropLast=True,	the	index	for	yellow	will	be	droppedohe	=	OneHotEncoder(inputCol='indexed',	outputCol='encoded',	dropLast=False)ohe_model	=	ohe.fit(indexed)ohe_transformed	=
ohe_model.transform(indexed)'''You	can	check	how	setting	dropLast=True,	the	4th	row	will	be+-------+-------+-------------+|feature|indexed|	encoded|+-------+-------+-------------+|	yellow|	3.0|(3,[],[])	|+-------+-------+-------------+'''ohe_transformed.show()+-------+|feature|+-------+|	blue||	red||	red||	white||	yellow||	red|+-------++-------+-------+|feature|indexed|+-------+-
------+|	blue|	1.0||	red|	0.0||	red|	0.0||	white|	2.0||	yellow|	3.0||	red|	0.0|+-------+-------++-------+-------+-------------+|feature|indexed|	encoded|+-------+-------+-------------+|	blue|	1.0|(4,[1],[1.0])||	red|	0.0|(4,[0],[1.0])||	red|	0.0|(4,[0],[1.0])||	white|	2.0|(4,[2],[1.0])||	yellow|	3.0|(4,[3],[1.0])||	red|	0.0|(4,[0],[1.0])|+-------+-------+-------------+4.5	TokenizationTokenization
is	the	process	of	splitting	a	document	into	a	vector	of	differentiated	tokens.	The	sentence	"The	quick	brown	fox	jumps	over	the	lazy	dog"	will	be	split	into	tokens	like	in	["The",	"quick",	"brown",	"fox",	"jumps",	"over",	"the",	"lazy",	"dog"].	Different	approaches	may	split	the	document	using	white	spaces,	commas,	regular	expressions,	or	any	other
character.In	MLlib	there	is	a	Tokenizer	transformer	for	this	purpose.from	pyspark	.sql	import	SparkSessionfrom	pyspark	.ml.	feature	import	Tokenizersession	=	SparkSession.builder.appName("Example").master("local").getOrCreate()sentenceDataFrame	=	session.createDataFrame	([(0,	"Hi	I	heard	about	Spark"),	(1,	"I	wish	Java	could	use	case
classes"),	(2,	"Logistic,	regression,	models,	are,	neat")],	['id',	'sentence'])tokenizer	=	Tokenizer(inputCol='sentence',	outputCol='words')tokenizer.transform(sentenceDataFrame).show(truncate=False)+---+---------------------------------------+---------------------------------------------+|id	|sentence	|words	|+---+---------------------------------------+---------------------------------------------+|0
|Hi	I	heard	about	Spark	|[hi,	i,	heard,	about,	spark]	||1	|I	wish	Java	could	use	case	classes	|[i,	wish,	java,	could,	use,	case,	classes]	||2	|Logistic,	regression,	models,	are,	neat|[logistic,,	regression,,	models,,	are,,	neat]|+---+---------------------------------------+---------------------------------------------+4.6	Stop	wordsNatural	language	is	redundant	and	not	every	term
provides	the	same	amount	of	information.	By	stop	words	we	refer	to	the	most	common	words	in	a	given	language.	These	words	are	so	common	that	result	into	non-relevant	chunks	of	information.	These	words	are	removed	previously	to	any	analysis.	There	is	no	a	single	list	of	stop	words	and	this	changes	with	every	language.MLlib	implements	the
StopWordsRemover	that	filters	out	stop	words	using	a	dictionary.from	pyspark	.sql	import	SparkSessionfrom	pyspark	.ml.	feature	import	StopWordsRemoversession	=	SparkSession.builder.appName("Example").master("local").getOrCreate()text	=	session.createDataFrame	([(0,	["I",	"saw",	"the",	"red",	"	balloon	"]),	(1,	["Mary",	"had",	"a",	"	little	",
"lamb"])	],	["id",	"raw"])text.show(truncate=False)remover	=	StopWordsRemover(inputCol='raw',	outputCol='filtered')remover.transform(text).show(truncate=False)+---+------------------------------+|id	|raw	|+---+------------------------------+|0	|[I,	saw,	the,	red,	balloon	]	||1	|[Mary,	had,	a,	little	,	lamb]|+---+------------------------------++---+------------------------------+--------------
--------+|id	|raw	|filtered	|+---+------------------------------+----------------------+|0	|[I,	saw,	the,	red,	balloon	]	|[saw,	red,	balloon	]	||1	|[Mary,	had,	a,	little	,	lamb]|[Mary,	little	,	lamb]|+---+------------------------------+----------------------+4.7	Count	VectorizerThis	estimator	counts	the	number	of	occurrences	of	items	in	a	vocabulary	represented	in	a	sparse	vector.	This	is
particularly	useful	to	represent	a	document	in	terms	of	the	frequency	of	its	elements	and	it	is	normally	used	in	probabilistic	models.from	pyspark	.sql	import	SparkSessionfrom	pyspark.ml.feature	import	CountVectorizersession	=	SparkSession.builder.appName("Example").master("local").getOrCreate()text	=	session.createDataFrame	([(0,'yellow	red
blue'.split()),	(1,	'red'.split()),	(2,	'blue	white	blue'.split()),	],	["id",	"raw"])text.show()cv	=	CountVectorizer(inputCol='raw',	outputCol='frequencies')cv_model	=	cv.fit(text)print('The	vocabulary:	',cv_model.vocabulary)frequencies	=	cv_model.transform(text)frequencies.show(truncate=False)+---+-------------------+|	id|	raw|+---+-------------------+|	0|[yellow,
red,	blue]||	1|	[red]||	2|[blue,	white,	blue]|+---+-------------------+The	vocabulary:	['blue',	'red',	'white',	'yellow']+---+-------------------+-------------------------+|id	|raw	|frequencies	|+---+-------------------+-------------------------+|0	|[yellow,	red,	blue]|(4,[0,1,3],[1.0,1.0,1.0])||1	|[red]	|(4,[1],[1.0])	||2	|[blue,	white,	blue]|(4,[0,2],[2.0,1.0])	|+---+-------------------+-------------------------
+4.8	N-gramsN-grams	are	a	common	input	for	many	algorithms	to	understand	the	probability	of	n	words	to	occur	together.	The	NGram	transformer	outputs	a	collection	of	these	N-grams.from	pyspark	.sql	import	SparkSessionfrom	pyspark.ml.feature	import	IDF,	Tokenizer,	NGramsession	=
SparkSession.builder.appName("Example").master("local").getOrCreate()text	=	session.createDataFrame	([(0,	"Hi	I	heard	about	Spark"),	(0,	"I	wish	Java	could	use	case	classes	"),	(0,	"Logistic	regression	models	are	neat")	],	["label",	"sentence"])#	First	we	tokenize	our	datasettokenizer	=	Tokenizer(inputCol	='sentence',	outputCol	='words')words	=
tokenizer.transform(text)words.show(truncate=False)#	Compute	2-gramsngram	=	NGram(inputCol='words',	outputCol='ngrams',	n=2)ngrams	=	ngram.transform(words)ngrams.show(truncate=False)+-----+-----------------------------------+------------------------------------------+|label|sentence	|words	|+-----+-----------------------------------+------------------------------------------+|0
|Hi	I	heard	about	Spark	|[hi,	i,	heard,	about,	spark]	||0	|I	wish	Java	could	use	case	classes	|[i,	wish,	java,	could,	use,	case,	classes]||0	|Logistic	regression	models	are	neat|[logistic,	regression,	models,	are,	neat]	|+-----+-----------------------------------+------------------------------------------++-----+-----------------------------------+------------------------------------------+-------------------------------
-----------------------------------+|label|sentence	|words	|ngrams	|+-----+-----------------------------------+------------------------------------------+------------------------------------------------------------------+|0	|Hi	I	heard	about	Spark	|[hi,	i,	heard,	about,	spark]	|[hi	i,	i	heard,	heard	about,	about	spark]	||0	|I	wish	Java	could	use	case	classes	|[i,	wish,	java,	could,	use,	case,	classes]|[i	wish,	wish
java,	java	could,	could	use,	use	case,	case	classes]||0	|Logistic	regression	models	are	neat|[logistic,	regression,	models,	are,	neat]	|[logistic	regression,	regression	models,	models	are,	are	neat]	|+-----+-----------------------------------+------------------------------------------+------------------------------------------------------------------+4.9	Word2VecThe	Word2Vec	represents	the	words
of	a	document	in	a	vector.	This	makes	possible	to	operate	with	documents	as	vectors	which	makes	possible	to	easily	computes	distances	and	enables	other	algorithms	specially	in	NLP.	Take	a	look	at	the	original	Google	code	here.from	pyspark.sql	import	SparkSessionfrom	pyspark.ml.feature	import	Word2Vecsession	=
SparkSession.builder.appName('Example').master('local').getOrCreate()corpus	=	session.createDataFrame([	('Spark	is	quite	useful'.split(),),	('I	can	use	Spark	with	Python'.split(),),	('Spark	is	not	so	difficult	after	all'.split(),),	],	['words'])corpus.show(truncate=False)w2v	=	Word2Vec(inputCol='words',	outputCol='result',	vectorSize=3,
minCount=0)w2v_model	=	w2v.fit(corpus)vectors	=	w2v_model.transform(corpus)vectors.show(truncate=False)+-------------------------------------------+|words	|+-------------------------------------------+|[Spark,	is,	quite,	useful]	||[I,	can,	use,	Spark,	with,	Python]	||[Spark,	is,	not,	so,	difficult,	after,	all]|+-------------------------------------------++-------------------------------------------+--------
----------------------------------------------------------+|words	|result	|+-------------------------------------------+------------------------------------------------------------------+|[Spark,	is,	quite,	useful]	|[0.08182145655155182,-0.07318692095577717,-0.0631803400174249]	||[I,	can,	use,	Spark,	with,	Python]	|[0.016474373017748196,-1.7273581276337305E-4,-0.04478610997709135]||[Spark,
is,	not,	so,	difficult,	after,	all]|[0.019738022836723497,0.029656097292900085,-0.033315843919159045]	|+-------------------------------------------+------------------------------------------------------------------+Most	models	are	computed	as	a	concatenation	of	operations,	each	operation	transforming	the	original	dataset.	For	example,	normalization	->	component	analysis	->
regression.	MLlib	uses	the	concept	of	pipelines	(similinar	to	the	one	used	in	SciKit)	to	unify	the	execution	of	a	sequence	of	steps	into	a	single	object.The	pipeline	is	defined	as	a	sequence	of	stages	connecting	transformers	and	estimators:Transformer:	receives	an	input	dataframe	and	returns	a	transformed	version	(standardizers)Estimator:	receives	an
input	dataframe	and	after	fitting	returns	a	transformer	(linear	regression,	logistic	regression,	etc.)Creating	a	pipeline	is	equivalent	to	set	the	sequence	of	stages	to	be	executed.from	pyspark.ml.pipeline	import	Pipelinepipeline	=	Pipeline(stages=[standardizer,	pca,	lr])Then	we	fit	the	model	and	transform	the	dataset	to	get	the	corresponding
results:model	=	pipeline.fit(dataset)model.transform(dataset).show()from	pyspark.sql	import	SparkSessionfrom	pyspark.ml.feature	import	Tokenizer,	StopWordsRemover,	CountVectorizerfrom	pyspark.ml.pipeline	import	Pipelinesession	=	SparkSession.builder.appName('Example').master('local').getOrCreate()corpus	=	session.createDataFrame([
('Spark	is	quite	useful',),	('I	can	use	Spark	with	Python',),	('Spark	is	not	so	difficult	after	all',),	],	['docs'])corpus.show(truncate=False)tokenizer	=	Tokenizer(inputCol='docs',	outputCol='tokens')stop_remover	=	StopWordsRemover(inputCol='tokens',	outputCol='filtered')cv	=	CountVectorizer(inputCol='filtered',	outputCol='frequencies')pipeline	=
Pipeline(stages=[tokenizer,	stop_remover,	cv])fitted	=	pipeline.fit(corpus)result	=	fitted.transform(corpus)result.show(truncate=False)for	m	in	fitted.stages:	print('-->',m.uid)	print(m.params)+-----------------------------------+|docs	|+-----------------------------------+|Spark	is	quite	useful	||I	can	use	Spark	with	Python	||Spark	is	not	so	difficult	after	all|+----------------------
-------------++-----------------------------------+-------------------------------------------+----------------------+-------------------------+|docs	|tokens	|filtered	|frequencies	|+-----------------------------------+-------------------------------------------+----------------------+-------------------------+|Spark	is	quite	useful	|[spark,	is,	quite,	useful]	|[spark,	quite,	useful]|(6,[0,2,3],[1.0,1.0,1.0])||I	can	use	Spark	with	Python	|
[i,	can,	use,	spark,	with,	python]	|[use,	spark,	python]	|(6,[0,1,5],[1.0,1.0,1.0])||Spark	is	not	so	difficult	after	all|[spark,	is,	not,	so,	difficult,	after,	all]|[spark,	difficult]	|(6,[0,4],[1.0,1.0])	|+-----------------------------------+-------------------------------------------+----------------------+-------------------------+-->	Tokenizer_346e29794e54[Param(parent='Tokenizer_346e29794e54',
name='inputCol',	doc='input	column	name.'),	Param(parent='Tokenizer_346e29794e54',	name='outputCol',	doc='output	column	name.')]-->	StopWordsRemover_cdda6836267e[Param(parent='StopWordsRemover_cdda6836267e',	name='caseSensitive',	doc='whether	to	do	a	case	sensitive	comparison	over	the	stop	words'),
Param(parent='StopWordsRemover_cdda6836267e',	name='inputCol',	doc='input	column	name.'),	Param(parent='StopWordsRemover_cdda6836267e',	name='inputCols',	doc='input	column	names.'),	Param(parent='StopWordsRemover_cdda6836267e',	name='locale',	doc='locale	of	the	input.	ignored	when	case	sensitive	is	true'),
Param(parent='StopWordsRemover_cdda6836267e',	name='outputCol',	doc='output	column	name.'),	Param(parent='StopWordsRemover_cdda6836267e',	name='outputCols',	doc='output	column	names.'),	Param(parent='StopWordsRemover_cdda6836267e',	name='stopWords',	doc='The	words	to	be	filtered	out')]-->
CountVectorizer_983c07eb2c8f[Param(parent='CountVectorizer_983c07eb2c8f',	name='binary',	doc='Binary	toggle	to	control	the	output	vector	values.	If	True,	all	nonzero	counts	(after	minTF	filter	applied)	are	set	to	1.	This	is	useful	for	discrete	probabilistic	models	that	model	binary	events	rather	than	integer	counts.	Default	False'),
Param(parent='CountVectorizer_983c07eb2c8f',	name='inputCol',	doc='input	column	name.'),	Param(parent='CountVectorizer_983c07eb2c8f',	name='maxDF',	doc='Specifies	the	maximum	number	of	different	documents	a	term	could	appear	in	to	be	included	in	the	vocabulary.	A	term	that	appears	more	than	the	threshold	will	be	ignored.	If	this	is	an
integer	>=	1,	this	specifies	the	maximum	number	of	documents	the	term	could	appear	in;	if	this	is	a	double	in	[0,1),	then	this	specifies	the	maximum	fraction	of	documents	the	term	could	appear	in.	Default	(2^63)	-	1'),	Param(parent='CountVectorizer_983c07eb2c8f',	name='minDF',	doc='Specifies	the	minimum	number	of	different	documents	a	term
must	appear	in	to	be	included	in	the	vocabulary.	If	this	is	an	integer	>=	1,	this	specifies	the	number	of	documents	the	term	must	appear	in;	if	this	is	a	double	in	[0,1),	then	this	specifies	the	fraction	of	documents.	Default	1.0'),	Param(parent='CountVectorizer_983c07eb2c8f',	name='minTF',	doc="Filter	to	ignore	rare	words	in	a	document.	For	each
document,	terms	with	frequency/count	less	than	the	given	threshold	are	ignored.	If	this	is	an	integer	>=	1,	then	this	specifies	a	count	(of	times	the	term	must	appear	in	the	document);	if	this	is	a	double	in	[0,1),	then	this	specifies	a	fraction	(out	of	the	document's	token	count).	Note	that	the	parameter	is	only	used	in	transform	of	CountVectorizerModel
and	does	not	affect	fitting.	Default	1.0"),	Param(parent='CountVectorizer_983c07eb2c8f',	name='outputCol',	doc='output	column	name.'),	Param(parent='CountVectorizer_983c07eb2c8f',	name='vocabSize',	doc='max	size	of	the	vocabulary.	Default	1


