
	

https://zizurun.nurepikis.com/799647075694842154650077390017961785606761?vetarifalunegifagisojixipagus=ronujalogabatinitojodevukipulezugipunowadimonufulomipesipivuwidelabunepogobigilonuvizibejugosasunabumimaputoxotenijonatarabumidugaxamuxakazametipewisimubenevilururosokipunutavobudizotetekunulapilitugeri&utm_kwd=what+is+project+management+system+development+life+cycle&saxuxodaguxuxadexedafanibigasekimolitufudubesikijamivosidof=suvufupupevometexabazamubodulalojixezubaruruzurasopasogexorenovodajanuzowikaduduriredusepujiwotunutitivadawat
























The	System	Development	Life	Cycle	(SDLC)	provides	a	well-structured	framework	that	gives	an	idea,	of	how	to	build	a	system.	It	consists	of	steps	as	follows	-	Plan,	Analyze,	Design,	Develop,	Test,	Implement	and	Maintain.	In	this	article,	we	will	see	all	the	stages	of	system	development.	System	Development	Life	CycleWe	will	delve	into	the	significance
of	each	stage,	emphasizing	the	critical	role	played	by	System	Design	in	the	overall	process.Stages	(Phases)	of	System	Development	Life	CycleThe	System	Development	Life	Cycle	(SDLC)	consists	of	several	interconnected	phases	that	provide	a	structured	framework	for	developing	a	system.	These	phases	include	Planning,	Analysis,	Design,
Development,	Testing,	Implementation,	and	Maintenance.	Each	phase	plays	a	vital	role	in	ensuring	the	system	is	successfully	developed,	with	System	Design	being	especially	critical	in	shaping	the	final	product.Stage	1:	PlanningThe	Planning	phase	sets	the	foundation	for	the	entire	SDLC.	This	stage	involves	identifying	the	system's	objectives,	defining
the	scope,	setting	timelines,	and	allocating	necessary	resources.	Effective	planning	ensures	that	the	development	process	aligns	with	the	organization's	goals,	guiding	the	project	in	a	clear	and	structured	direction.Stage	2:	AnalysisIn	the	Analysis	phase,	the	focus	is	on	understanding	and	documenting	the	system’s	requirements.	This	involves	gathering
input	from	stakeholders,	reviewing	current	processes,	and	identifying	the	system’s	needs.	The	data	collected	forms	the	basis	for	developing	a	system	that	addresses	both	user	expectations	and	organizational	challenges.Stage	3:	DesignThe	Design	phase	translates	the	requirements	gathered	during	Analysis	into	a	detailed	technical	blueprint.	This
includes	designing	the	system’s	architecture,	database	models,	user	interfaces,	and	defining	system	components.	The	outcome	of	this	phase	provides	the	technical	structure	needed	to	guide	the	upcoming	development	and	implementation	activities.Stage	4:	DevelopmentIn	this	phase,	the	actual	coding	and	development	of	the	system	take	place.
Developers	build	the	system	according	to	the	design	specifications,	implementing	features,	creating	databases,	and	writing	code.	This	phase	also	includes	initial	internal	testing	to	ensure	the	system	functions	as	expected	and	adheres	to	design	and	functional	requirements.Stage	5:	TestingTesting	is	a	crucial	phase	that	ensures	the	system	is	free	of
errors	and	functions	correctly	under	various	conditions.	This	phase	includes	multiple	types	of	testing,	such	as	unit	testing,	integration	testing,	system	testing,	and	user	acceptance	testing.	The	goal	is	to	identify	and	fix	any	issues	before	the	system	is	deployed.Stage	6:	ImplementationThe	Implementation	phase	involves	deploying	the	developed	system
into	a	live	environment.	Key	activities	include	system	installation,	migrating	data,	training	users,	and	configuring	infrastructure.	This	phase	requires	thorough	planning	to	ensure	a	smooth	transition	from	the	existing	system	to	the	new	one	with	minimal	disruptions.Stage	7:	MaintenanceMaintenance	is	an	ongoing	phase	where	the	system	is	monitored,
maintained,	and	updated	as	needed.	This	includes	bug	fixes,	performance	enhancements,	security	patches,	and	responding	to	user	feedback.	Proper	maintenance	ensures	the	system	remains	efficient,	secure,	and	adaptable	to	future	business	needs.How	is	System	Development	Life	Cycle	different	from	System	Design	Life	Cycle?Let's	explore	the	key
differences	between	the	System	Development	Life	Cycle	and	the	System	Design	Life	Cycle	in	a	more	narrative	form:Scope:System	Development	Life	Cycle:	Encompasses	the	entire	process	of	developing	and	managing	an	information	system,	from	initial	planning	to	system	retirement	and	maintenance.System	Design	Life	Cycle:	Focuses	specifically	on
the	design	aspect	within	the	broader	System	Development	Life	Cycle.	It	deals	with	the	detailed	planning	and	creation	of	system	architecture,	components,	and	modules.Phases:System	Development	Life	Cycle:	Comprises	various	phases,	including	planning,	analysis,	design,	implementation,	and	maintenance.	Each	phase	contributes	to	the	overall
development	and	management	of	the	system.System	Design	Life	Cycle:	Emphasizes	phases	such	as	preliminary	design,	detailed	design,	implementation,	testing,	and	maintenance.	The	primary	focus	is	on	the	detailed	planning	and	creation	of	design	specifications.Emphasis:System	Development	Life	Cycle:	Provides	a	comprehensive	framework	for	the
entire	system	development	process.	It	addresses	aspects	beyond	design,	including	user	requirements,	system	functionality,	coding,	and	ongoing	maintenance.System	Design	Life	Cycle:	Concentrates	on	the	design	aspect,	specifically	creating	detailed	specifications	for	system	components,	architecture,	and	user	interfaces.	It	places	a	strong	emphasis
on	the	planning	and	structuring	of	the	system.Objective:System	Development	Life	Cycle:	Aims	to	guide	the	development	process	from	the	conceptualization	of	the	system	to	its	implementation,	testing,	deployment,	and	ongoing	maintenance.System	Design	Life	Cycle:	Aims	to	create	detailed	design	specifications	and	plans	that	serve	as	a	blueprint	for
the	development	team.	It	focuses	on	translating	high-level	requirements	into	actionable	design	elements.Involvement:System	Development	Life	Cycle:	Involves	a	wide	range	of	stakeholders,	including	users,	business	analysts,	developers,	testers,	and	maintenance	personnel,	across	various	phases	of	the	life	cycle.System	Design	Life	Cycle:	Primarily
involves	designers,	architects,	and	developers	in	the	creation	of	detailed	design	specifications	and	plans.	Collaboration	with	other	stakeholders	occurs,	but	the	emphasis	is	on	the	design	team.Iterations	and	Feedback:System	Development	Life	Cycle:	Embraces	an	iterative	approach	with	feedback	loops	to	accommodate	changes	and	improvements
throughout	the	life	cycle.	Users	and	stakeholders	are	involved	in	providing	continuous	feedback.System	Design	Life	Cycle:	Is	also	iterative,	with	the	design	evolving	based	on	feedback	from	testing,	integration,	and	the	need	for	design	adjustments.Output:System	Development	Life	Cycle:	Outputs	a	fully	developed,	tested,	and	maintained	information
system	that	meets	user	requirements	and	business	objectives.System	Design	Life	Cycle:	Outputs	detailed	design	specifications,	architectural	plans,	and	guidelines	that	serve	as	a	basis	for	the	development	team	to	implement	and	test	the	system.Timeframe:System	Development	Life	Cycle:	Spans	the	entire	life	cycle	of	the	system,	and	the	timeframe
can	vary	from	months	to	years,	depending	on	the	complexity	of	the	project.System	Design	Life	Cycle:	Focuses	on	the	design	within	shorter	timeframes,	as	part	of	the	broader	system	development	process.In	essence,	while	System	Development	Life	Cycle	provides	a	holistic	view	of	the	system	development	process,	System	Design	Life	Cycle	narrows	its
focus	to	the	detailed	planning	and	creation	of	the	system's	design	components.	Both	are	integral	to	successful	system	development,	with	the	latter	playing	a	crucial	role	in	translating	high-level	requirements	into	actionable	design	elements.Significance	of	System	Design	in	System	Development	Life	CycleSystem	Design	is	a	crucial	stage	in	the	SDLC	as
it	bridges	the	gap	between	requirements	analysis	and	system	development.	It	transforms	user	needs	and	functional	specifications	into	a	detailed	technical	plan	that	guides	the	development	team.	Proper	system	design	ensures	that	the	developed	system	aligns	with	the	desired	functionality,	performance,	and	scalability	requirements.	Updated:
September	5,	2023	If	you’re	a	developer	or	project	manager,	an	understanding	of	the	most	up-to-date	SDLC	methodologies	is	a	powerful	tool.	It	empowers	you	to	speed	up	the	development	process,	cut	costs,	leverage	the	full	creative	capacity	of	your	team,	and	more.	With	that	in	mind,	Intellectsoft’s	best	experts	have	created	a	complete	guide	to	the
system	development	life	cycle.	You’ll	learn	about	its	core	meaning	and	phases,	major	software	engineering	methodologies,	and	the	most	important	benefits	it	can	provide	during	project	development.	Special	attention	has	been	given	to	the	characteristics	of	each	of	the	seven	SDLC	phases	because	a	thorough	understanding	of	these	different	stages	is
required	to	implement	both	new	and	modified	software	systems.	Ready	to	maximize	the	efficiency	of	your	systems	development	life	cycle?	Let’s	dive	in.		What	is	the	System	Development	Life	Cycle?	The	system	development	life	cycle	or	SDLC	is	a	project	management	model	used	to	outline,	design,	develop,	test,	and	deploy	an	information	system	or
software	product.	In	other	words,	it	defines	the	necessary	steps	needed	to	take	a	project	from	the	idea	or	concept	stage	to	the	actual	deployment	and	further	maintenance.	SDLC	represents	a	multitude	of	complex	models	used	in	software	development.	On	a	practical	level,	SDLC	is	a	general	methodology	that	covers	different	step-by-step	processes
needed	to	create	a	high-quality	software	product.		7	Stages	of	the	System	Development	Life	Cycle	There	are	seven	separate	SDLC	stages.	Each	of	them	requires	different	specialists	and	diverse	skills	for	successful	project	completion.	Modern	SDLC	processes	have	become	increasingly	complex	and	interdisciplinary.	That	is	why	it’s	highly
recommended	that	project	managers	engage	a	dedicated	team	of	professional	developers.	Such	a	team	will	possess	enough	expertise	and	knowledge	to	launch	a	first-class	software	product	that	perfectly	corresponds	to	all	your	expectations,	needs,	and	goals.	Let’s	take	a	look	at	the	core	tasks	associated	with	each	of	the	different	phases	of	the
development	life	cycle.	1.	Planning	Stage	–	What	Are	the	Existing	Problems?	Planning	is	one	of	the	core	phases	of	SDLC.	It	acts	as	the	foundation	of	the	whole	SDLC	scheme	and	paves	the	way	for	the	successful	execution	of	upcoming	steps	and,	ultimately,	a	successful	project	launch.	In	this	stage,	the	problem	or	pain	the	software	targets	is	clearly
defined.	First,	developers	and	other	team	members	outline	objectives	for	the	system	and	draw	a	rough	plan	of	how	the	system	will	work.	Then,	they	may	make	use	of	predictive	analysis	and	AI	simulation	tools	at	this	stage	to	test	the	early-stage	validity	of	an	idea.	This	analysis	helps	project	managers	build	a	picture	of	the	long-term	resources	required
to	develop	a	solution,	potential	market	uptake,	and	which	obstacles	might	arise.		At	its	core,	the	planning	process	helps	identify	how	a	specific	problem	can	be	solved	with	a	certain	software	solution.	Crucially,	the	planning	stage	involves	analysis	of	the	resources	and	costs	needed	to	complete	the	project,	as	well	as	estimating	the	overall	price	of	the
software	developed.	Finally,	the	planning	process	clearly	defines	the	outline	of	system	development.	The	project	manager	will	set	deadlines	and	time	frames	for	each	phase	of	the	software	development	life	cycle,	ensuring	the	product	is	presented	to	the	market	in	time.	2.	Analysis	Stage	–	What	Do	We	Want?	Once	the	planning	is	done,	it’s	time	to
switch	to	the	research	and	analysis	stage.		In	this	step,	you	incorporate	more	specific	data	for	your	new	system.	This	includes	the	first	system	prototype	drafts,	market	research,	and	an	evaluation	of	competitors.		To	successfully	complete	the	analysis	and	put	together	all	the	critical	information	for	a	certain	project,	developers	should	do	the	following:
Generate	the	system	requirements.	A	Software	Requirement	Specification	(SRS)	document	will	be	created	at	this	stage.	Your	DevOps	team	should	have	a	high	degree	of	input	in	determining	the	functional	and	network	requirements	of	the	upcoming	project.	Evaluate	existing	prototypes.	Different	prototypes	should	be	evaluated	to	identify	those	with
the	greatest	potential.		Conduct	market	research.	Market	research	is	essential	to	define	the	pains	and	needs	of	end-consumers.	In	recent	years,	automated	NLP	(natural	language	processing)	research	has	been	undertaken	to	glean	insights	from	customer	reviews	and	feedback	at	scale.		Set	concrete	goals.	Goals	are	set	and	allocated	to	the	stages	of
the	system	development	life	cycle.	Often,	these	will	correspond	to	the	implementation	of	specific	features.	Most	of	the	information	generated	at	this	stage	will	be	contained	in	the	SRS.	This	document	shapes	the	strict	regulations	for	the	project	and	specifies	the	exact	software	model	you	will	eventually	implement.	3.	Design	Stage	–	What	Will	the
Finished	Project	Look	Like?	The	next	stage	of	a	system	development	project	is	design	and	prototyping.		This	process	is	an	essential	precursor	to	development.	It	is	often	incorrectly	equated	with	the	actual	development	process	but	is	rather	an	extensive	prototyping	stage.		This	step	of	the	system	development	life	cycle	can	significantly	eliminate	the
time	needed	to	develop	the	software.	It	involves	outlining	the	following:		The	system	interface	Databases	Core	software	features	(including	architecture	like	microservices)		User	interface	and	usability	Network	and	its	requirement	As	a	rule,	these	features	help	to	finalize	the	SRS	document	as	well	as	create	the	first	prototype	of	the	software	to	get	the
overall	idea	of	how	it	should	look	like.	Prototyping	tools,	which	now	offer	extensive	automation	and	AI	features,	significantly	streamline	this	stage.	They	are	used	for	the	fast	creation	of	multiple	early-stage	working	prototypes,	which	can	then	be	evaluated.	AI	monitoring	tools	ensure	that	best	practices	are	rigorously	adhered	to.	4.	Development	Stage	–
Let’s	Create	the	System	In	the	development	stage	of	SDLC,	the	system	creation	process	produces	a	working	solution.	Developers	write	code	and	build	the	app	according	to	the	finalized	requirements	and	specification	documents.	This	stage	includes	both	front	and	back-end	development.	DevOps	engineers	are	essential	for	allocating	self-service
resources	to	developers	to	streamline	the	process	of	testing	and	rollout,	for	which	CI/CD	is	typically	employed.		This	phase	of	the	system	development	life	cycle	is	often	split	into	different	sub-stages,	especially	if	a	microservice	or	miniservice	architecture,	in	which	development	is	broken	into	separate	modules,	is	chosen.		Developers	will	typically	use
multiple	tools,	programming	environments,	and	languages	(C++,	PHP,	Python,	and	others),	all	of	which	will	comply	with	the	project	specifications	and	requirements	outlined	in	the	SRS	document.		5.	Testing	Stage	–	Is	It	the	Exact	One	We	Needed?	The	testing	stage	ensures	the	application’s	features	work	correctly	and	coherently	and	fulfill	user
objectives	and	expectations.		This	process	involves	detecting	the	possible	bugs,	defects,	and	errors,	searching	for	vulnerabilities,	etc.,	and	can	sometimes	take	up	even	more	time	compared	to	the	app-building	stage.	There	are	various	approaches	to	testing,	and	you	will	likely	adopt	a	mix	of	methods	during	this	phase.	Behavior-driven	development,
which	uses	testing	outcomes	based	on	plain	language	to	include	non-developers	in	the	process,	has	become	increasingly	popular.		Similarly,	automated	and	cloud-based	platforms,	which	simulate	testing	environments,	take	a	significant	amount	of	manual	time	out	of	this	stage	of	the	system	development	life	cycle.	Selenium,	a	browser	testing	tool,	is
one	popular	example	of	such	a	platform.		6.	Integration	and	Implementation	Stage	–	How	Will	We	Use	It?	Once	the	product	is	ready	to	go,	it’s	time	to	make	it	available	to	its	end	users	and	deploy	it	to	the	production	environment.		At	this	stage,	the	software	undergoes	final	testing	through	the	training	or	pre-production	environment,	after	which	it’s
ready	for	presentation	on	the	market.	It	is	important	that	you	have	contingencies	in	place	when	the	product	is	first	released	to	market	should	any	unforeseen	issues	arise.	Microservices	architecture,	for	example,	makes	it	easy	to	toggle	features	on	and	off.	And	you	will	likely	have	multiple	rollback	protocols.	A	canary	release	(to	a	limited	number	of
users)	may	be	utilized	if	necessary.		7.	Maintenance	Stage	–	Let’s	Make	the	Improvements	The	last	but	not	least	important	stage	of	the	SDLC	process	is	the	maintenance	stage,	where	the	software	is	already	being	used	by	end-users.	During	the	first	couple	of	months,	developers	might	face	problems	that	weren’t	detected	during	initial	testing,	so	they
should	immediately	react	to	the	reported	issues	and	implement	the	changes	needed	for	the	software’s	stable	and	convenient	usage.	This	is	particularly	important	for	large	systems,	which	usually	are	more	difficult	to	test	in	the	debugging	stage.	Automated	monitoring	tools,	which	continuously	evaluate	performance	and	uptime	and	detect	errors,	can
assist	developers	with	ongoing	quality	assurance.	This	is	also	known	as	“instrumentation.”	Create	high-end	software	solutions	for	your	company	with	IntellectsoftGet	in	touch	Basic	6	SDLC	Methodologies	Now	that	you	know	the	basic	SDLC	phases	and	why	each	of	them	is	important,	it’s	time	to	dive	into	the	core	methodologies	of	the	system
development	life	cycle.	These	are	the	approaches	that	can	help	you	to	deliver	a	specific	software	model	with	unique	characteristics	and	features.	Most	developers	and	project	managers	opt	for	one	of	these	6	approaches.	Hybrid	models	are	also	popular.	Let’s	discuss	the	major	differences	and	similarities	of	each.	Waterfall	Model	This	approach	implies
a	linear	type	of	project	phase	completion,	where	each	stage	has	its	separate	project	plan	and	is	strictly	related	to	the	previous	and	next	steps	of	system	development.	Typically,	each	stage	must	be	completed	before	the	next	one	can	begin,	and	extensive	documentation	is	required	to	ensure	that	all	tasks	are	completed	before	moving	on	to	the	next
stage.	This	is	to	ensure	effective	communication	between	teams	working	apart	at	different	stages.		While	a	Waterfall	model	allows	for	a	high	degree	of	structure	and	clarity,	it	can	be	somewhat	rigid.	It	is	difficult	to	go	back	and	make	changes	at	a	later	stage.		Iterative	Model	The	Iterative	model	incorporates	a	series	of	smaller	“waterfalls,”	where
manageable	portions	of	code	are	carefully	analyzed,	tested,	and	delivered	through	repeating	development	cycles.	Getting	early	feedback	from	an	end	user	enables	the	elimination	of	issues	and	bugs	in	the	early	stages	of	software	creation.	The	Iterative	model	is	often	favored	because	it	is	adaptable,	and	changes	are	comparatively	easier	to
accommodate.		Spiral	Model	The	Spiral	model	best	fits	large	projects	where	the	risk	of	issues	arising	is	high.	Changes	are	passed	through	the	different	SDLC	phases	again	and	again	in	a	so-called	“spiral”	motion.	It	enables	regular	incorporation	of	feedback,	which	significantly	reduces	the	time	and	costs	required	to	implement	changes.	V-Model
Verification	and	validation	methodology	requires	a	rigorous	timeline	and	large	amounts	of	resources.	It	is	similar	to	the	Waterfall	model	with	the	addition	of	comprehensive	parallel	testing	during	the	early	stages	of	the	SDLC	process.	The	verification	and	validation	model	tends	to	be	resource-intensive	and	inflexible.	For	projects	with	clear
requirements	where	testing	is	important,	it	can	be	useful.		The	Big	Bang	Model	Mostly	used	for	creating	and	delivering	a	wide	range	of	ideas,	this	model	perfectly	fits	the	clients	who	don’t	have	a	clear	idea	or	vision	of	what	their	final	product	should	look	like.	A	more	concrete	vision	of	project	completion	is	gained	via	delivering	different	system
variations	that	may	more	accurately	define	the	final	output.		While	it	is	usually	too	expensive	for	the	delivery	of	large	projects,	this	SDLC	methodology	perfectly	works	for	small	or	experimental	projects.	Agile	Model	The	Agile	model	prioritizes	collaboration	and	the	implementation	of	small	changes	based	on	regular	feedback.	The	Agile	model	accounts
for	shifting	project	requirements,	which	may	become	apparent	over	the	course	of	SDLC.		The	Scrum	model,	which	is	a	type	of	time-constrained	Agile	model,	is	popular	among	developers.	Often	developers	will	also	use	a	hybrid	of	the	Agile	and	Waterfall	model,	referred	to	as	an	“Agile-Waterfall	hybrid.”	As	you	can	see,	different	methodologies	are	used
depending	on	the	specific	vision,	characteristics,	and	requirements	of	individual	projects.	Knowing	the	structure	and	nuances	of	each	model	can	help	to	pick	the	one	that	best	fits	your	project.	Benefits	of	SDLC	Having	covered	the	major	SDLC	methodologies	offered	by	software	development	companies,	let’s	now	review	whether	they	are	actually	worth
employing.		Here	are	the	benefits	that	the	system	development	life	cycle	provides:	Comprehensive	overview	of	system	specifications,	resources,	timeline,	and	the	project	goals	Clear	guidelines	for	developers	Each	stage	of	the	development	process	is	tested	and	monitored	Control	over	large	and	complex	projects	Detailed	software	testing	Process
flexibility	Lower	costs	and	strict	time	frames	for	product	delivery	Enhanced	teamwork,	collaboration,	and	shared	understanding	Possible	Drawbacks	of	SDLC	Just	like	any	other	software	development	approach,	each	SDLC	model	has	its	drawbacks:	Increased	time	and	costs	for	the	project	development	if	a	complex	model	is	required	All	details	need	to
be	specified	in	advance	SDLC	models	can	be	restrictive	A	high	volume	of	documentation	which	can	slow	down	projects	Requires	many	different	specialists	Client	involvement	is	usually	high	Testing	might	be	too	complicated	for	certain	development	teams	While	there	are	some	drawbacks,	SDLC	has	proven	to	be	one	of	the	most	effective	ways	for
successfully	launching	software	products.		Alternative	development	paradigms,	such	as	rapid	application	development	(RAD),	may	be	suitable	for	some	projects	but	typically	carry	limitations	and	should	be	considered	carefully.		Conclusion	The	system	development	life	cycle	(SDLC)	is	a	complex	project	management	model	that	encompasses	system	or
software	creation	from	its	initial	idea	to	its	finalized	deployment	and	maintenance.	SDLC	comprises	seven	different	stages:	planning,	analysis,	design,	development,	testing,	implementation,	and	maintenance.	All	are	necessary	for	delivering	a	high-quality	and	cost-effective	product	in	the	shortest	time	frame	possible.	Learning	about	major
methodologies	of	SDLC,	along	with	their	benefits	and	drawbacks,	enables	you	to	set	up	effective	system	development	processes	that	deliver	the	best	possible	outcomes.		At	Intellectsoft,	we	know	how	important	an	effective	project	management	strategy	is.	Our	developers	and	specialists	have	a	track	record	of	building	innovative	software	solutions	that
perfectly	fit	our	clients’	business	goals	and	requirements.	If	you’re	looking	for	a	reliable	software	development	company	to	turn	your	idea	into	a	top-quality	software	product,	contact	our	team	today.	The	typical	stages	of	the	system	development	life	cycle	are	planning	and	feasibility,	requirements	analysis,	design	and	prototyping,	software
development,	system	testing,	implementation,	and	maintenance.	Alternatively,	the	processes	described	above	are	sometimes	split	into	5	phases	of	the	system	development	life	cycle:	planning,	design,	implementation,	maintenance,	and	follow-up	testing.	The	Agile	approach	is	probably	the	most	widely	used	SDLC	model.	Hybrid	models	are	also
common.	At	Intellectsoft,	we	are	proficient	with	a	wide	range	of	models.	Automation	and	AI	are	transforming	the	way	developers	approach	SDLC.	DevOps	processes	have	also	had	a	significant	impact.	Intellectsoft	works	at	the	cutting	edge	of	SDLC	tech	and	can	help	you	implement	it	in	your	organization.	The	hospitality	industry	depends	a	lot	on
keeping	customers	happy,	but	it’s	getting	harder	to	attract	and	keep	them.	The	pandemic	hit	this	industry	hard,	and	now	market	competition	is	tougher	than	ever,	with	competitive	offerings	swaying	customers.	Hospitality	businesses	are	willing	to	spend	big	to	win	customers	back.	The	main	questions	for	many	are:	how	can	we	stay	ahead	of	the
competition,	keep	our	customers,	and	increase	revenue?	Keep	reading—we’ve	got	some	answers.Customers	today	have	so	many	options	that	getting	their	attention	is	a	real	challenge.	It’s	not	easy	to	make	them	choose	your	business	over	others.	What	worked	10	years	ago	doesn’t	work	the	same	way	now.	Back	then,	people	often	chose	businesses
based	on	reputation.	But	with	new	types	of	businesses	(boutique	hotels,	craft	cafes)	popping	up	or	big	enterprises	getting	a	new	strategy,	expectations	have	changed.	The	good	news	is	these	businesses	have	shown	what	works:	great	customer	service.	They	focus	on	personalizing	the	experience,	making	things	easy	for	customers,	offering	loyalty
programs,	and	using	smart	technology.In	this	article,	we’ll	explore	these	tech	strategies	and	show	you	how	they	can	help	your	business	grow,	and	double	the	revenue.	Keep	reading	to	learn	more!The	Importance	of	Customer	Satisfaction	in	the	Hospitality	IndustryCustomer	satisfaction,	which	equals	exceptional	customer	experience,	is	the	backbone
of	the	hospitality	industry.	It	plays	a	central	role	in	driving	revenue	and	loyalty,	as	satisfied	customers	are	more	likely	to	return	and	recommend	a	hotel,	restaurant,	or	other	hospitality	business	to	others.	In	fact,	a	study	by	the	Harvard	Business	Review	found	that	a	1%	increase	in	customer	satisfaction	can	lead	to	a	0.5%	increase	in	revenue.	Moreover,
loyal	customers	are	more	likely	to	forgive	mistakes	and	continue	doing	business	with	a	company,	even	if	they	experience	a	negative	encounter.Let's	quickly	review	the	challenges	the	hospitality	industry	is	facing	right	now	so	we	can	move	on	to	the	solutions	and	our	case	studies.Challenges	in	HospitalityAs	businesses	navigate	the	changes	in	the
hospitality	industry,	there	are	some	key	areas	where	a	little	improvement	can	go	a	long	way.	From	improving	customer	service	to	embracing	digital	transformation	and	tackling	labor	shortages,	we’ll	take	a	closer	look	at	today’s	biggest	challenges—and,	more	importantly,	how	technology	can	step	in	to	help.	Let’s	get	started!Poor	Customer
ServiceEven	with	strong	and	high-quality	business	offerings,	poor	customer	service	can	drive	potential	customers	and	existing	customers	away.	Common	issues	include:	Long	wait	times	in	customer	service	queues	(it	is	worth	remembering	that	our	attention	spans	8	seconds,	and	we	live	in	a	very	busy	world,	so	quick	and	efficient	responses	are	more
important	than	ever.)	Poorly	trained	customer	service	representatives	Lack	of	follow-up	Services	not	being	done	properly	or	quickly	Recall	issues	that	require	multiple	service	calls	These	problems	can	frustrate	customers.	But,	at	Intellectsoft,	we	believe	that	the	right	approach,	combined	with	technology,	can	address	them	effectively.Digital
Transformation	Gaps	Approximately	50%	of	hotels	are	adopting	new	technologies,	with	43%	automating	repetitive	tasks	and	39%	upgrading	existing	systems.	Source:	workstaff.appSource:	workstaff.appWhile	many	businesses	are	adopting	digital	solutions,	some	still	struggle	with	outdated	systems	and	fragmented	data.	Legacy	companies	often	face
chaos	when	trying	to	manage	their	data	and	create	new	systems	or	add	features.Some	of	the	recent	examples	include	clients	coming	to	us	to	create	AI	solutions	for	their	services	while	their	data	simply	was	not	ready	for	the	advanced	tasks.	We	advise	stepping	back,	communicating	with	a	company	objective,	and	working	on	keeping	the	data	clean
(centralized,	structured,	and	segmented).When	we’re	asked	to	create	advanced	systems	using	AI,	we	always	emphasize	the	importance	of	organized	data.	To	train	AI	and	build	such	complicated	systems	that	truly	work,	you	need	to	start	from	the	very	beginning—collecting,	storing,	centralizing,	and	organizing	it.	We	encourage	our	clients	to	align	all
departments	to	work	internally	on	the	data	so	we	can	create	a	unified	digital	system	that	delivers	personalized	experiences.If	you’re	unsure	where	to	start	with	your	data,	we	can	help.	Collecting	feedback	at	various	touchpoints	along	the	customer	journey	is	crucial	for	gaining	insights	into	customer	satisfaction	and	loyalty.	Book	an	IT	consultation	with
us,	and	our	experts	will	guide	you	in	mapping	out	a	path	to	get	more	from	your	data	and	build	a	system	that	works	for	your	business	and	team.	Reskilling	StaffThe	pandemic	hit	hard	in	early	2020,	especially	for	the	hospitality	and	travel	industries.	Even	five	years	later,	many	businesses	are	still	feeling	the	impact.	Recruiting	and	retaining	skilled	staff
has	become	a	major	challenge	post-pandemic.	Reskilling	to	address	technology’s	impact	is	of	utmost	importance,	as	about	40%	of	hotel	General	Managers	place	it	among	their	top	three	workforce	challenges.Source:	Deloitte	We	strongly	believe	that	adopting	the	right	technology	can	help.	For	example,	creating	an	app	to	train	your	staff	not	only	saves
time	but	also	ensures	consistency	in	learning.	AI	assistants	can	also	work	alongside	your	team,	helping	with	tasks	like	recruitment	(providing	industry	insights,	crafting	emails)	and	staff	training.	Imagine	having	an	app	dedicated	to	making	your	team’s	work	easier	and	more	efficient!How	Technology	Tackles	These	Challenges	and	Supports	a
Customer-Centric	Hospitality	CultureAutomation,	AI,	and	similar	technologies	may	threaten	many.	However,	the	debate	about	replacing	humans	isn’t	about	that—it’s	about	cooperation	and	working	hand	in	hand	with	technology	to	achieve	the	highest	standards	and	establish	brand-new	“golden	standards.”	Technology	is	here	to	assist	staff	in	listening
to	and	collecting	customer	insights	from	data.	Let’s	review	some	of	our	cases	to	see	examples	of	how	technology	helps	improve	customer	experience	and	supports	customer	service.Examples	of	Intellectsoft	projectsProperty	management	systems	(PMS)	We	created	a	web	platform	and	mobile	app	that	makes	managing	daily	tasks	easier	and	offers	extra
services	to	improve	residents’	experience.	It	gives	a	clear	overview	of	daily	activities	and	helps	with	managing	units	and	users.	Residents	can	easily	book	amenities,	submit	service	requests,	and	report	incidents.	The	platform	also	includes	features	for	equipment	management,	key	instructions,	workflows,	and	custom	permissions.	This	makes	it	easier
for	staff	to	stay	on	top	of	equipment	and	ensure	residents	have	all	the	information	they	need.	Plus,	tools	like	announcements,	quick	votes,	a	forum,	and	a	community	calendar	help	build	a	connected	and	engaged	community.Guest	Experience	Management	App	Our	next	app	helped	our	client	improve	their	guest	experience	by	replacing	printed
marketing	materials	and	the	need	for	phone	calls	with	a	smart	solution.	Now,	guests	can	easily	order	in-room	dining,	make	reservations,	and	interact	with	staff—	through	a	simple	tablet	in	their	room.	The	solution	includes	three	parts:	a	custom	in-room	tablet	with	a	variety	of	services,	an	admin	panel	for	hotel	staff	and	service	providers,	and	a	backend
system	that	connects	everything	together.	This	approach	makes	things	easier	for	guests	and	staff,	improving	both	convenience	and	efficiency.Existing	Customers	First:	Building	Loyalty	with	Personalized	TouchpointsKeeping	existing	customers	is	not	just	a	strategy;	it’s	well-known	that	retaining	existing	customers	is	more	cost-effective	than	acquiring
new	ones.	In	fact,	research	shows	that	it	costs	five	times	more	to	acquire	a	new	customer	than	to	retain	an	existing	one.	KPMG	named	customer	retention	as	the	number	one	revenue	driver	for	the	company.	Moreover,	a	5%	increase	in	customer	retention	can	lead	to	a	25%	to	95%	increase	in	profits,	showing	the	significant	impact	loyal	customers	can
have	on	a	business’s	bottom	line.	Retention	strategies,	like	personalized	experiences	and	loyalty	programs,	can	foster	long-term	relationships	and	generate	recurring	revenue,	ultimately	making	them	an	invaluable	part	of	any	business	model.Personalization:	How	Technology	Can	Help?Everyone	loves	to	feel	special—it’s	part	of	being	human.	In
hospitality,	personalization	has	evolved	from	being	a	luxury	to	an	essential	standard.	With	the	right	technology	to	manage	your	data	effectively,	you	can	deliver	those	“wow”	moments	that	guests	won’t	forget.	More	than	half	of	hotel	chains	are	already	using	personalization	features	on	their	websites,	booking	platforms,	and	apps,	and	another	39%	are
planning	to	follow	suit	soon.	They’re	tailoring	experiences	to	fit	guest	preferences	perfectly.Source:	DeloitteHow	does	technology	make	it	happen?	CRM	Systems:	They	help	you	keep	track	of	guest	preferences,	booking	history,	and	special	requests	so	you	can	offer	services	tailored	just	for	them.	Loyalty	Programs:	Personalized	rewards	and	offers	show
your	guests	that	you	value	them,	keeping	them	coming	back	for	more.	AI	Personalization:	AI	analyzes	guest	data	to	predict	what	they’ll	love	(from	room	upgrades	to	local	recommendations)	before	they	even	ask.	IoT	Gadgets:	Smart	room	features	like	voice-activated	assistants,	or	temperature	controls	adjust	to	your	guests’	preferences,	making	their
stay	more	comfortable.	With	tech-powered	personalization,	you’re	building	loyalty	and	maximizing	the	lifetime	value	of	every	customer.Our	Case	Study:	Smart	Hotel	Management	&	Loyalty	Program	For	one	of	our	clients,	we	created	a	smart	room	solution,	complete	with	a	custom	IoT	system.	Guests	can	use	a	mobile	app	to	control	services,	explore
amenities,	and	find	resort	information--	with	a	special	touch	to	their	suite	type.	For	the	client’s	entertainment	business,	we	improved	their	legacy	software	by	running	a	full	IT	and	code	check,	fixing	issues,	and	making	the	system	better	for	customers.Along	with	that,	we	developed	a	mobile	app	for	the	loyalty	program,	allowing	businesses	to
effortlessly	reward	their	customers	and	keep	them	engaged	with	exclusive	benefits.Our	solutions	not	only	helped	the	client	with	special	experiences	for	guests;	it	also	improved	operations,	cutting	costs	by	eliminating	inefficiencies.	Here's	what	our	experts	shared:"We	transitioned	away	from	ESB	(Enterprise	Service	Bus)	systems,	which	previously
cost	millions,	and	replaced	them	with	more	efficient,	self-managed	solutions.	Similarly,	we’ve	implemented	Device	Farms	that	improved	operations	and	saved	resources."Leveraging	Software	to	Increase	Upsell	OpportunitiesHere	are	some	examples	of	tech	tactics	that	will	help	your	team	sell	more	and	introduce	new	offerings	to	existing	customers,
improve	overall	efficiency	leaving	your	team	grateful:	Dynamic	Pricing	AlgorithmsFor	finance	and	marketing	teams,	manually	calculating	pricing	by	segment	to	introduce	your	clients	can	be	incredibly	challenging.	AI-powered	tools	can	strongly	optimize	these	strategies	by	analyzing	your	database	in	detail.Upselling	via	AppsBoosting	revenue	in	the
hospitality	business	often	comes	down	to	personalized	experiences.	Imagine	this:	a	guest	books	a	room,	and	then	your	app	suggests	a	spa	package	or	a	room	upgrade	at	just	the	right	moment.	Later,	it	nudges	them	to	book	a	dinner	reservation	or	a	guided	tour	designed	to	their	preferences.	With	apps	offering	these	personalized	recommendations
during	and	after	bookings,	you’re	not	just	increasing	your	revenue	per	guest	but	also	skyrocketing	their	experience.	And	you	do	it	in	a	sustainable	way,	not	by	speculating,	but	by	offering	what	your	customers	desire	based	on	their	previous	experiences.	It’s	a	win-win:	seamless,	helpful,	and	far	from	pushy.	Inventory	and	Resource	Management
SoftwareMaking	every	resource	count	in	your	hospitality	business	is	key.	Inventory	and	resource	management	software	allows	you	to	effortlessly	track	everything	from	linens	to	room	availability,	ensuring	nothing	goes	to	waste.	Having	real-time	insights	to	reduce	overstock,	avoid	shortages,	and	optimize	operations	assists	sustainably	keep	everything
under	control	and	know	what	you	need	to	focus	more.	It	helps	maximize	room	occupancy	by	aligning	bookings	with	available	resources,	ensuring	every	room	and	item	is	used	effectively.	This	approach	leads	to	smarter	management,	better	guest	experiences,	and	a	noticeable	boost	to	your	bottom	line.	Adopting	these	strategies	not	only	optimizes	your
operations	but	also	drives	business	growth.	Ready	to	discover	how	technology	can	elevate	your	goals?	We’re	here	to	create	a	tailored	solution	for	you.Steps	For	Implementing	a	Customer	Service	Technology	SolutionImproving	customer	service	in	hospitality	doesn’t	have	to	be	a	daunting	task.	With	the	right	technology,	you	can	smooth	the	path	of	your
operations,	speed	up	response	times,	and	elevate	the	overall	guest	experience.	Here’s	where	you	can	make	it	happen:1.	Understand	Your	NeedsStart	by	identifying	the	challenges	your	business	is	facing.	Are	you	struggling	to	manage	high	volumes	of	inquiries,	track	customer	feedback,	or	personalize	the	guest	experience?	Pinpointing	your	needs	will
guide	you	to	the	best	solutions.2.	Pick	the	Right	ToolsChoose	technology	that	aligns	with	your	goals.	Look	for	solutions	that	are	scalable,	easy	to	use,	and	integrate	effortlessly	with	your	current	systems.	Options	like	CRM	software,	live	chat	tools,	or	a	guest	experience	app	can	make	a	difference.3.	Equip	Your	TeamTechnology	is	only	as	effective	as	the
people	using	it.	Train	your	staff	to	make	the	most	of	the	new	tools,	so	they	can	deliver	exceptional	service	and	resolve	issues	quickly.	Confident,	well-equipped	staff	creates	happy,	loyal	customers.4.	Keep	ImprovingOnce	implemented,	monitor	how	well	the	solution	works.	Are	response	times	improving?	Are	customers	more	satisfied?	Regular
evaluations	will	help	you	fine-tune	your	approach	and	keep	things	running	harmoniously.Some	Tech	Ideas	for	Hospitality	Businesses	CRM	Software:	Manage	customer	interactions	and	preferences.	Guest	Experience	Apps:	Delight	guests	with	personalized	experiences	right	at	their	fingertips.	Amenity	Management	Systems:	Simplify	operations	for
everything	from	room	service	to	facility	bookings.	Helpdesk	Software:	Resolve	customer	issues	optimally.	Live	Chat	Tools:	Offer	instant	support	and	answers.	Social	Media	Management	Tools:	Keep	customer	interactions	engaging	and	organized.	Integrating	these	strategies	will	not	only	improve	your	customer	service	but	also	deliver	unforgettable
customer	satisfaction,	loyalty,	and,	ultimately,	your	bottom	line.	Ready	to	take	the	next	step?	Book	a	consultation	with	our	experts.ConclusionTo	wrap	up	everything	we've	discussed,	customer	satisfaction	and	experience	are	at	the	heart	of	hospitality.	Retaining	customers	is	more	than	just	keeping	them	around—building	strong,	long-lasting
relationships	and	consistently	meeting	their	evolving	needs.	By	understanding	their	pain	points	and	offering	personalized	solutions,	you	can	inspire	loyalty	and	drive	progress.	With	the	right	technology	and	continuous	improvement,	your	business	can	stay	ahead,	let	go	of	what	no	longer	serves	you,	and	keep	growing.	At	Intellectsoft,	with	over	17	years
of	experience	in	software	development,	our	expert	team	is	ready	to	help.	We	create	everything	from	mobile	apps	to	full-fledged	portals	and	systems,	leveraging	the	latest	technologies	like	AI,	Cloud,	and	Machine	Learning.	With	deep	experience	in	the	hospitality	industry,	we’re	here	to	craft	personalized	solutions	that	bring	your	business	unforgettable
customer	experience	and	retain	your	valuable	clients.Ready	to	double	your	revenue	and	level	up	your	customer	retention	strategy	with	personalized	technology?	Contact	our	experts,	and	we	look	forward	to	working	hand	in	hand	with	you	to	build	or	revitalize	the	perfect	app	or	system	for	you.	Thanks!	Please	verify	your	email.	Published:	2	February,
2024	·	12	mins	read	Learn	how	the	System	Development	Life	Cycle	(SDLC)	provides	a	structured	approach	to	software	projects.	Our	post	breaks	down	its	structured	phases,	including	planning,	analysis,	design,	implementation,	testing,	and	maintenance.	We	explain	how	well-structured	SDLC	prevents	disorganized	workflows,	unmet	quality	standards,
and	stakeholder	misalignment.	Starting	a	custom	software	development	project	may	become	an	incredibly	challenging	task	for	multiple	C-level	managers.	The	numerous	technical	details	and	uncertainties	are	often	a	barrier	to	achieving	desired	goals	in	the	end.	Fortunately,	you	can	overcome	this	particular	barrier.	The	only	thing	to	know	is	how	a
system	development	life	cycle	(SDLC)	methodology	must	perform	correctly	and	what	you	should	expect	from	all	its	stages.	This	article	will	define	what	is	a	system	development	life	cycle,	describe	the	basics	of	the	SDLC	process	and	explain	how	everything	works	in	practice.	Besides,	we	will	analyze	both	pros	and	cons	of	applying	the	SDLC
methodology.	What	is	a	system	development	life	cycle?	The	system	development	life	cycle	(SDLC)	serves	as	a	process	applied	to	create	software	products.	SDLC	covers	several	steps	and	is	also	sometimes	referred	to	as	the	“application	development	life-cycle.”	Typically,	it	begins	with	the	organization’s	decision	to	create	an	information	system	and
finishes	with	continuous	support.	That	means	until	the	new	or	improved	system	stops	being	exploited.	Nowadays,	the	SDLC	approach	associates	more	with	innovative	solutions	based	on	state-of-the-art	technologies.	However,	the	term	“system	development	life	cycle”	was	coined	more	than	half	a	century	ago.	Back	in	the	1960s,	IT	teams	started	using
it	to	define	the	process	of	building	management	information	systems	in	a	structured	way.	Of	course,	the	system	development	life	cycle	methods	have	changed	since	that	time.	But	the	main	idea	and	core	theoretical	background	remain	the	same.	In	particular,	a	system	development	life	cycle	process	aims	to	deliver	high-quality	software	solutions	that
exceed	customer	expectations	and	are	built	on	time	and	on	budget.	Following	a	set	of	predefined	sequential	phases	ensures	that	the	work	will	be	efficient,	and	the	results	will	be	predictable.	By	the	way,	the	phrase	“system	development	life	cycle”	can	sometimes	have	a	broader	meaning,	covering	both	a	hardware	and	a	software	part	of	planned
information	technology	infrastructure.	But	for	the	purposes	of	this	article,	we’ll	use	it	as	a	synonym	of	the	term	“software	development	life	cycle”.	Software	Development	Life	Cycle	Process	As	mentioned,	the	process	of	a	system	development	life	cycle	includes	several	SDLC	phases.	The	exact	number	of	system	development	life	cycle	phases	varies	from
five	to	seven,	depending	on	the	specifics	of	a	system	development	project	and	a	particular	methodology	that	a	team	applies.	We’ll	describe	the	seven-stage	version	of	a	system	development	life	cycle	since	it	will	allow	you	to	see	the	bigger	picture.	Ideation	Ideation	is	the	first	among	seven	phases	of	the	existing	system	development	life	cycle.	Its
purpose	is	to	define	the	product	idea	and	determine	what	user	problem	the	future	solution	should	solve.	Oftentimes,	development	teams	aren’t	involved	in	this	SDLC	stage	since	the	client	starts	looking	for	programmers	when	the	product	vision	already	exists.	The	estimation	of	required	resources	and	a	timeframe	can	also	be	considered	at	this	point,
but	only	at	a	very	high	level.	Requirements	That’s	when	a	client	and	development	team	dive	into	details.	The	task	is	to	gather,	discuss,	and	describe	user	requirements	for	the	future	information	system	and	ensure	that	programmers	have	enough	data	to	build	the	right	product.	After	the	system	analysis	phase	is	complete,	all	parties	involved	in	the
product	creation	process	should	have	a	clear	vision	of	how	the	solution	must	look	and	work.	Besides	the	scope	of	the	project,	a	client	and	development	team	perform	a	feasibility	study.	The	particular	feasibility	study	ensures	that	the	project	is	feasible	from	financial,	organizational,	and	technological	points	of	view	and	sets	a	deadline	needed	to	bring
the	idea	to	reality.	System	design	The	design	phase	of	a	system	development	life	cycle	is	all	about	visualization.	A	system	architect	describes	how	all	product	components	will	interact	with	each	other,	defines	security	levels,	and	outlines	the	way	the	data	will	be	transmitted.	At	the	same	time,	UI	and	UX	designers	translate	a	product	idea	into	schemes,
layouts,	and	wireframes.	In	general,	the	system	design	phase	is	the	first	important	milestone	in	a	software	development	process	since	it	marks	a	transition	from	theory	to	tangible	deliverables.	Development	At	the	development	phase,	software	engineers	build	an	actual	product.	It	usually	requires	a	significant	amount	of	time	as	compared	to	the
previous	three	system’s	development	life	cycle	stages.	As	a	rule,	the	coding	team	includes	front-end	programmers	and	back-end	programmers	who	are	responsible	for	different	development	tasks.	The	ultimate	result	of	this	stage	should	be	a	working	solution	along	with	source	code	documentation.	Quality	assurance	During	the	quality	assurance	SDLC
phase,	testers	have	to	make	sure	that	a	software	solution	is	bug-free	and	meets	all	the	customer	expectations.	There	are	many	types	of	testing:	usability	testing,	performance	testing,	security	testing,	and	so	on.	Usually,	a	product	undergoes	several	types	of	testing	before	the	release.	If	a	bug	is	detected,	the	product	is	passed	on	to	programmers	again
so	they	can	fix	it.	Deployment	At	the	deployment	stage	of	a	software	development	life	cycle,	a	finished	product	is	rolled	out	in	a	production	environment.	It	is	either	released	to	be	downloaded	by	end-users	or	installed	on	the	client’s	premises	and	prepared	to	start	running	there.	Maintenance	Maintenance	is	the	seventh	and	final	phase	of	the
development	cycle.	Building	custom	software	is	nothing	like	purchasing	a	table	for	your	office.	To	get	lasting	benefits	from	a	digital	product,	you	have	to	keep	it	relevant.	It’s	just	impossible	to	develop	an	information	system	once	and	use	it	for	many	years	without	support	and	updates.	The	maintenance	stage	covers	everything	that	happens	after	the
proposed	system	is	launched.	For	example,	it	can	include	repairs	in	case	of	new	system	failures,	adding	new	features,	and	upgrades.	Besides,	the	systems	development	life	cycle	stages	don’t	always	go	one	after	another	in	a	linear	manner.	Building	a	new	system	is	a	rather	complex	endeavor.	So,	in	some	instances,	various	phases	of	the	SDLC	can	be
repeated.	SDLC	Examples	in	Action	The	SDLC	is	a	foundational	concept	that	can	be	implemented	in	practice	in	numerous	different	ways.	Teams	decide	which	systems	development	life	cycle	methodology	to	follow	based	on	the	project’s	specifics,	programmers’	experience,	client’s	preferences,	and	other	factors.	But	no	matter	which	option	they	choose,
the	process	will	contain	all	SDLC	phases.	The	difference	is	how	these	phases	are	structured	and	which	one	gets	the	largest	share	of	the	attention.	System	development	life	cycle:	waterfall	model	The	waterfall	is	considered	the	most	traditional	and	rigid	system	development	life	cycle	type.	It	provides	a	defined	framework	for	a	development	process,	and
a	team	can	hardly	deviate	from	it.	The	SDLC	stages	in	the	waterfall	go	one	after	another	in	a	sequential	manner.	It	means	that	a	development	team	can	proceed	to	the	next	stage	only	after	the	previous	one	is	complete.	Other	key	characteristics	of	a	waterfall	approach	usually	include	the	fixed	price	and	strict	deadlines.	Since	this	SDLC	model	doesn’t
imply	the	possibility	to	iterate,	it’s	difficult	to	implement	changes	after	the	project	kick-off.	Due	to	this,	the	waterfall	methodology	fits	well	short-term	projects	which	have	clear	user	requirements.	System	development	life	cycle:	agile	model	The	agile	methodology	represents	the	modern	approach	to	project	management.	It	allows	teams	to	develop
software	products	incrementally,	using	short	cycles	called	“sprints”.	Each	sprint	contains	at	least	five	out	of	seven	stages	of	a	system	development	life	cycle:	software	requirement	specification,	system’s	design,	development,	QA,	and	deployment.	After	a	sprint	is	completed,	a	client	gets	one	piece	of	the	product	functionality	(“increment”)	that	can
potentially	be	released	and	used	by	end-users.	Since	the	product	is	created	feature	by	feature,	programmers	can	easily	make	changes	to	a	system	operation	if	necessary.	A	high	flexibility	level	makes	a	development	process	adaptable	to	dynamic	market	conditions,	ensuring	that	a	client	will	get	a	relevant	product	in	the	end.	Also,	active	customer
involvement	minimizes	the	risk	of	investing	in	a	software	solution	that	doesn’t	satisfy	user	needs.	System	development	life	cycle:	other	models	Waterfall	and	agile	software	development	life	cycle	models	are	the	most	popular	ones.	But	there	are	many	more	SDLC	frameworks	that	you	can	choose	for	your	project,	for	example:	Spiral	model.	It	combines	a
traditional	approach	and	iterative	process,	emphasizing	the	importance	of	risk	analysis.	Also,	a	spiral	model	is	more	flexible	compared	to	the	Waterfall	model	or	other	SDLC	models.	It	allows	projects	to	pass	through	the	main	stages	of	development,	again	and	again,	thanks	to	a	metaphorically	spiral	motion.	This	model	is	most	efficient	for	large
products	as	development	teams	can	build	very	customized	solutions	and	incorporate	the	obtained	feedback	at	the	early	development	life	cycle	phases.	V-model.	This	model	is	also	referred	to	as	a	validation	and	verification	approach.	The	particular	SDLC	methodology	serves	as	an	extension	of	the	Waterfall	model.	But	its	steps	do	not	flow	down	linearly
since	they	are	designed	upward	to	create	a	V	shape.	In	this	project	management	model,	the	relationships	between	each	development	stage	are	connected	with	a	testing	phase	that	is	incorporated	for	catching	bugs	and	defects.	Thus,	the	V-model	requires	the	appropriate	discipline	and	a	rigorous	timeline.	Big	Band	model.	As	a	project	life	cycle	model,
the	Big	Band	one	is	the	least	structured	compared	to	other	models	used	for	the	development	of	software.	Besides,	it	follows	no	rigorous	processes	or	procedures	and	requires	minimum	planning.	In	the	Big	Band	model,	the	development	process	depends	on	the	resources	available	at	the	moment.	Project	managers	can	use	this	life	cycle	approach	for
smaller	projects	and	development	life	cycle	testing	experiments.	RAD	model.	The	abbreviation	stands	for	“rapid	application	development.”	It	focuses	on	fast	prototyping,	rapid	delivery,	and	gathering	user	feedback.	Thus,	this	life	cycle	approach	is	incredibly	adaptive	since	it	emphasizes	the	adaptive	process,	not	planning.	Often,	prototypes	are	used	in
the	RAD	model	to	substitute	relevant	design	specifications.	That	places	RAD	driven	by	UI	functional	requirements	among	the	most	popular	systems	development	life	cycle	models.	From	its	origin,	this	model	has	served	as	a	response	to	the	plan-driven	and	structured	Waterfall	model.	Iterative	model.	The	iterative	model	depends	on	repetition	and
repeat	testing.	It	means	that	new	versions	of	a	software	application	are	created	at	the	end	of	each	stage.	That	allows	catching	potential	errors	and	provides	system	engineers	with	an	opportunity	to	continuously	enhance	the	end	product	before	it	will	be	ready	for	the	market.	This	conceptual	model	also	makes	it	possible	for	developers	to	build	a
working	version	of	the	product	early.	That	contributes	to	the	less	expensive	implementation	of	changes.	To	better	meet	the	client’s	requirements,	a	development	team	can	also	use	a	hybrid	approach	and	combine	several	models	in	the	entire	project.	How	to	choose	the	SDLC	model?	Ideally,	a	development	team	and	a	client	should	select	a	software
development	life	cycle	model	together.	Here	are	the	main	criteria	you	must	take	into	account:	Needs	and	concerns	of	stakeholders	(e.g.,	business	owners,	employees,	end-users)	Project’s	specifics	(e.g.,	scope,	requirements,	budget,	timeframe,	technologies)	A	team’s	size	and	skill	set	(i.e.,	if	they	have	worked	with	a	particular	model	or	not)	For
instance,	if	creating	solid	documentation	is	important	for	a	client,	it’s	better	to	choose	a	waterfall	or	V-shape	conceptual	model.	In	case	a	priority	is	fast	getting	to	the	market,	then	a	RAD	or	agile	SDLC	methodologies	will	be	a	more	suitable	option.	What	are	the	Benefits	of	SDLC	Why	is	having	the	systems	development	life	cycle	important	for	project
success?	As	mentioned,	it	helps	teams	deliver	top-notch	digital	products	that	meet	all	the	clients’	needs.	But	not	only	that.	Other	benefits	of	SDLC	include:	better	management	control	over	the	entire	development	project	transparency	and	visibility	of	all	the	processes	clarity	of	requirements	a	single	vision	of	a	product	for	all	the	parties	involved
predictable	results	in	terms	of	time,	costs,	and	deliverables	reduced	risk	of	going	off	the	track	Besides,	if	a	team	follows	a	system	development	life	cycle	SDLC,	it’s	mentally	more	oriented	on	results.	It	means	that	there	will	be	less	wasted	effort,	so	a	client	can	expect	better	ROI.	Disadvantages	of	system	development	life	cycle	At	the	same	time,	there
can	be	some	critical	cons	of	systems	development	life	cycle:	Due	to	assumptions	made	at	the	start	of	the	system	development	project,	if	different	unexpected	circumstances	complicate	the	development	process,	that	can	lead	to	more	complications	in	the	future.	For	instance,	if	newly	applied	hardware	is	not	working	appropriately,	it	can	increase	the
costs	and	the	time	required	for	the	development.	Several	approaches	are	not	flexible.	It	may	be	hard	to	estimate	the	overall	costs	at	the	start	of	the	software	project.	Performing	testing	at	the	end	of	the	development	process	can	slow	down	development	teams.	Importance	of	System	Development	Life	Cycle	The	systems	development	life	cycle	allows
lowering	the	complexity	usual	for	developing	a	proposed	system	from	scratch.	Thus,	it	is	critical	to	implement	SDLC	since	it	helps	to	convert	ideas	of	projects	into	functional	and	completely	operational	structures.	Apart	from	covering	various	technical	aspects	regarding	system	development,	SDLC	is	efficient	for	process	development,	change
management,	or	user	experience.	Another	great	advantage	of	SDLC	is	that	it	promotes	planning	ahead	of	time	and	allows	defining	costs	and	staffing	decisions,	identifying	goals,	measuring	system	performance,	and	validating	points	at	all	phases	of	the	development	life	cycle	to	improve	the	quality	of	the	end	product.	Who	are	the	system	analysts?
System	analysts	are	individuals	who	deal	with	analysis	and	design	techniques	necessary	to	solve	business	issues	using	information	technology.	In	most	cases,	the	system	analysis	allows	defining	the	existing	system	gaps	and	areas	of	opportunity	that	should	be	eliminated	for	generating	organizational	improvements	or	the	required	systems	to	achieve
the	desired	goals.	After	all,	the	system	analysis	is	performed	by	professionals	who	possess	appropriate	interpersonal,	technical,	analytical,	and	management	skills.	A	system	analyst	is	an	IT	expert	who	works	on	the	high-level	system	review	for	assessing	whether	a	new	system,	infrastructure,	and	computer	system	function	correctly	and	efficiently.	They
research	issues,	discover	solutions,	propose	a	course	of	action,	communicate	with	stakeholders,	choose	resources,	and	design	action	plans	that	help	reach	goals	and	satisfy	pre-defined	needs.	That	makes	them	professionals	in	studying	systems’	integration,	processes,	and	procedures	to	create	the	best	possible	solutions.	Also,	system	analysts	are	often
highly	skilled	in	different	operating	systems,	hardware	configurations,	and	using	a	necessary	programming	language.	These	professionals	are	always	involved	from	the	beginning	phases	of	the	development	project.	Ultimately,	a	system	analyst	provides	the	transformation	of	requirements	into	technical	design	specifications,	so	their	main	task	is	to
understand	and	define	how	to	solve	issues	with	the	help	of	platforms,	protocols,	software,	and	hardware.	Conclusion	Custom	software	development	is	a	complex	process	in	a	majority	of	cases.	If	you	don’t	follow	the	predefined	systems	development	life	cycle	phases,	it’ll	be	rather	difficult	to	harness	the	chaos	and	avoid	the	most	dangerous	mistakes.
Nowadays,	there	are	a	variety	of	SDLC	models	to	choose	from.	But	no	matter	which	methodology	the	team	will	use,	it	will	help	you	get	a	high-quality	software	solution,	save	costs,	and	reduce	time	to	market.	All	projects	follow	a	finite	framework	known	as	the	project	management	life	cycle,	which	consists	of	five	phases	and	moves	from	start	to	finish.
Having	a	firm	understanding	of	the	project	management	life	cycle	can	help	you	better	manage	projects	by	maintaining	a	clear	focus	on	what	needs	to	be	accomplished	at	every	stage.	In	this	article,	we'll	review	the	different	phases	in-depth	and	how	you	can	further	develop	your	knowledge	about	the	life	cycle.	Afterward,	build	key	project	management
skills	and	learn	about	different	methodologies	by	enrolling	in	the	Google	Project	Management	Professional	Certificate.	What	is	the	project	management	life	cycle?The	project	management	life	cycle	is	a	step-by-step	framework	of	best	practices	used	to	shepherd	a	project	from	initiation	to	conclusion.	By	following	each	step,	teams	increase	their	chances
of	achieving	their	goals,	including	meeting	crucial	deadlines	and	staying	within	budget.	While	project	managers	can	choose	from	many	project	management	methodologies	to	define	how	they'll	oversee	a	project,	the	project	management	life	cycle	is	a	larger	framework	that	describes	the	order	a	project	follows.	The	five	phases	of	the	project
management	life	cycle	are:	InitiatingPlanningExecutingMonitoring	&	controllingClosingThe	importance	of	the	project	management	life	cycleThe	project	management	life	cycle	is	important	to	follow	for	several	reasons.	It	typically	provides:	Similar	to	the	life	cycle	a	project	follows,	products	also	follow	a	unique	framework	that	begins	when	a	product	is
introduced	to	consumers	and	ends	when	it's	removed	from	shelves.	Learn	more	about	the	product	lifecycle.	The	project	management	life	cycle:	5	phasesLet's	review	the	five	phases	of	the	project	management	life	cycle	and	look	more	closely	at	the	work	that	typically	needs	to	be	accomplished	with	each	one.	1.	InitiatingThis	is	a	crucial	phase	to	the
project’s	success	because	it	gives	the	team	direction.	Without	clarity	around	what	needs	to	be	achieved	and	why,	the	project	runs	the	risk	of	not	accomplishing	the	end	goals	and	meeting	stakeholders'	expectations.In	the	initiation	phase,	you	will	define	the	project,	including	its	purpose,	goals,	scope,	resources,	team	roles,	and	stakeholder
expectations.	The	initiation	phase	can	include	the	following	steps:	Communicating	with	stakeholders	to	understand	the	purpose	and	desired	outcomesIdentifying	project	scopeDetermining	SMART	goals	(specific,	measurable,	achievable,	relevant,	and	time-bound)Clarifying	resources	like	budget	and	time	constraintsConfirming	team	size	and	roles
requiredDetermining	how	often	and	which	stakeholders	will	be	involved	throughout	the	projectCompiling	a	project	proposal	and	project	charterTools	and	documents	used	in	the	initiation	phase	can	include:Project	proposal:	The	project	proposal	defines	a	project	and	outlines	key	dates,	requirements,	and	goals.Project	charter:	This	is	a	definitive
document	that	describes	the	project	and	main	details	necessary	to	reach	its	goals.	This	can	include	potential	risks,	benefits,	constraints,	and	key	stakeholders.RACI	chart:	A	RACI	chart	plots	the	roles	and	responsibilities	of	members	on	a	project	team.2.	PlanningIn	the	planning	phase,	you’ll	determine	the	steps	to	actually	achieve	the	project	goals.	In
other	words,	the	“how”	of	completing	a	project.	If	the	initiation	phase	involves	assembling	your	troops,	the	planning	phase	involves	deciding	what	to	do	with	them.You’ll	establish	budgets,	timelines,	milestones,	source	materials,	and	necessary	documents.	This	step	also	involves	calculating	and	predicting	risk,	implementing	change	processes,	and
outlining	communication	protocols.	The	planning	phase	can	include	the	following	steps:Deciding	on	milestones	that	lead	up	to	goal	completionDeveloping	a	schedule	for	tasks	and	milestones,	including	time	estimates	and	buffersEstablishing	change	processesDetermining	how	and	how	often	to	communicate	with	team	members	and
stakeholdersCreating	and	signing	documents	such	as	non-disclosure	agreements	(NDAs)	or	requests	for	proposal	(RFPs)Assessing	and	managing	risk	by	creating	a	risk	registerHolding	a	kick-off	meeting	to	start	the	projectTools	used	in	the	planning	phase	can	include:		Gantt	chart:	A	horizontal	bar	chart	in	which	members	can	see	what	tasks	must	be
completed	in	what	order,	and	how	long	each	is	expected	to	takeRisk	register:	A	chart	that	lists	risks	associated	with	the	project,	along	with	their	probability,	potential	impact,	risk	level,	and	mitigation	plansRead	more:	What	Is	Change	Management?	+	How	to	Use	It	Effectively3.	Execute	and	complete	tasksExecuting	a	project	means	putting	your	plan
into	action	and	keeping	the	team	on	track.	Generally,	this	means	tracking	and	measuring	progress,	managing	quality,	mitigating	risk,	managing	the	budget,	and	using	data	to	inform	your	decisions.	The	execution	phase	can	include	the	following	steps:	Using	tools	like	GANTT	or	burndown	charts	to	track	progress	on	tasksResponding	to	risks	when	they
manifestRecording	costsKeeping	team	members	motivated	and	on	taskKeeping	stakeholders	informed	of	progressIncorporating	changes	via	change	requestsTools	used	in	the	execution	phase	can	include:Change	requests:	These	are	documents	used	to	propose	changes	to	a	project’s	scope	or	goalsBurndown	chart:	This	chart	breaks	down	tasks	on	a
granular	level	and	visualizes	the	amount	of	time	remaining4.	Monitor	&	control	Although	monitoring	and	controlling	is	labeled	as	the	fourth	step,	it	typically	takes	place	concurrently	with	the	execution	phase.	You'll	be	responsible	for	monitoring	the	project's	performance,	gathering	key	data	to	determine	whether	it's	performing	in	line	with	the	project
plan.	If	not,	you	will	control	the	issues	that	need	to	be	addressed.	Steps	in	the	monitoring	&	controlling	phase	can	include:Setting	quality	assurance	protocols	Using	project	monitoring	toolsGathering	relevant	project	dataIdentifying	any	issues	(or	risks)	that	ariseDigesting	that	data	into	project	reports	Resolving	issues	by	implementing	change	control
Tools	used	in	the	monitoring	&	controlling	phase	include:Project	management	software:	Tools	like	Jira,	Trello,	and	AirTable	can	help	you	monitor	tasks,	including	the	roles	responsible	for	particular	work,	and	their	deadlines	and	deliverables.	QA	tools:	Software	like	Jira,	or	data	visualization	charts	like	a	Pareto	chart	or	a	Histogram,	can	help	you
communicate	any	important	areas	that	need	attention	or	what's	going	well.	Change	control	plan:	If	you	end	up	needing	to	implement	changes	to	the	project,	a	change	control	plan	will	help	you	outline	what	that	entails,	who	will	be	responsible,	and	any	deadline	or	budget	adjustments	that	may	impact	project	scope.	5.	Close	projectsIn	the	closing	phase
of	the	project	management	life	cycle,	you’ll	conclude	project	activities,	turn	the	finished	product	or	service	over	to	its	new	owners,	and	assess	the	things	that	went	well	and	didn’t	go	so	well.	It’ll	also	be	a	time	to	celebrate	your	hard	work.Steps	in	the	closing	phase	can	include:Conducting	retrospectives	and	take	notes	of	changes	you	can	implement	in
the	futureCommunicating	to	stakeholders	of	the	end	of	the	project	and	providing	an	impact	reportCommunicating	with	the	new	owners	of	a	projectCreating	a	project	closeout	reportCelebrating	the	end	of	the	project	and	your	successesTools	used	in	the	closing	phase	include:Impact	report:	This	report	compiles	a	series	of	metrics	that	showcase	how
your	project	made	a	difference	and	is	presented	to	your	stakeholders.Project	closeout	report:	A	project	closeout	report	provides	a	summary	of	your	project’s	accomplishments,	and	provides	key	learnings	for	future	project	managers	to	reference.The	following	video	provides	an	overview	of	the	project	management	life	cycle.	This	is	a	preview	of	the
Google	Project	Management	Professional	Certification.	3	ways	to	keep	learning	about	the	project	management	life	cycleExploring	the	project	management	life	cycle	more	extensively	can	be	a	great	way	to	familiarize	yourself	with	this	process,	discover	how	it	works	in	real-life	situations,	and	build	a	foundation	for	using	the	life	cycle	in	the	future.	Here
are	three	ways	you	can	learn	more:	1.	Read	project	management	books.Reading	books	about	project	management	is	a	low-cost	way	to	gain	insight	into	the	project	management	life	cycle	and	project	management	in	general	in	your	spare	time.	2.	Take	an	online	course	or	complete	a	certificate.	Online	courses	and	certificates,	such	as	those	you'll	find	on
Coursera,	offer	a	visual	way	to	grasp	key	project	management	concepts,	including	the	life	cycle,	as	well	as	hands-on	training	so	you	get	to	practice	what	you're	learning.	3.	Network	with	project	managers.	Engaging	in	discussions	with	other	project	managers	allows	you	to	gain	first-hand	accounts	of	how	the	project	life	cycle	works.	By	building



relationships	and	creating	community	with	other	project	managers,	you	can	ask	questions,	get	practical	tips,	and	potentially	observe	projects	in	action.Subscribe	to	our	weekly	newsletter	Career	Chat.	It's	a	low-commitment	way	to	stay	current	with	industry	trends	and	skills	you	can	use	to	guide	your	career	path.	Sharpen	your	project	management
skills	with	CourseraDeepen	your	knowledge	of	project	management	with	the	Google	Project	Management	Professional	Certificate.	Over	six	courses,	you'll	learn	about	every	phase	of	project	management,	including	how	to	create	effective	project	documentation	and	artifacts.


