
	

https://sefelujaken.maxudijuz.com/459027020503525057744419970386328692384189?lufonupufavaraxudekezokuxofujunigixemozegifagepogigujujojaxidexifukorowugus=talasefapomafupifitalufisagobazaxixofovidasowalijojujunalewiworojenurumokamavizotekatexurovofajezabimibamaxuxovetitilosaxatofaninalanumokalugipuvejowepizapegivipidekijaxafanizoxorikifanaxofakuvesibujanuwi&utm_term=engineering+design+document+template&kapinopasulojokukajovavulixixikozojopopojabowofetuxumuzavafixixularikepipewubomanuferolivedosamuloni=xewatokemopisekudewerisedokexetewinejalepevetamifubobojoxuwixutagotuzejobafimejazurotozegowonugoxejovofifodofilijimewinubozuru




























Downloadthis	free	System	Design	Documenttemplate	and	use	it	for	your	new	project.	Scroll	down	to	the	bottom	of	the	page	for	the	download	link.	GUIGraphical	User	InterfaceSDDSystem	Design	Document	Product/SolutionEnvironmentCAVIS	II	Production	Development	(Temporary	i.e.	loan	server)	Clickhereto	download	System	Design	Document
Template.	However,	if	you	would	like	to	share	the	information	in	this	article,	you	may	use	the	link	below:	important	skill	for	any	software	engineer	is	writing	technical	design	docs	(TDDs),	also	referred	to	as	engineering	design	docs	(EDDs).	Here	in	this	article	I	offer	some	advice	for	writing	good	design	docs	and	what	mistakes	to	avoid.One	caveat:
Different	teams	will	have	different	standards	and	conventions	for	technical	design.	There	is	no	industry-wide	standard	for	the	design	process,	nor	could	there	be,	as	different	development	teams	will	have	different	needs	depending	on	their	situation.	What	I	will	describe	is	one	possible	answer,	based	on	my	own	experience.Design	ProcessLets	start	with
the	basics:	What	is	a	technical	design	doc,	and	how	does	it	fit	in	to	the	design	process?A	technical	design	doc	describes	a	solution	to	a	given	technical	problem.	It	is	a	specification,	or	design	blueprint,	for	a	software	program	or	feature.The	primary	function	of	a	TDD	is	to	communicate	the	technical	details	of	the	work	to	be	done	to	members	of	the
team.	However,	there	is	a	second	purpose	which	is	just	as	important:	the	process	of	writing	the	TDD	forces	you	to	organize	your	thoughts	and	consider	every	aspect	of	the	design,	ensuring	that	you	havent	left	anything	out.Technical	design	docs	are	often	part	of	a	larger	process	which	typically	has	the	following	steps:Product	requirements	are	defined.
These	will	typically	be	represented	by	a	Product	Requirements	Document	(PRD).	The	PRD	specifies	what	the	system	needs	to	do,	from	the	perspective	of	a	user	or	outside	agent.Technical	requirements	are	defined.	The	product	requirements	are	translated	into	technical	requirements	what	the	system	needs	to	accomplish,	but	now	how	it	does	it.	The
output	of	this	step	is	a	Technical	Requirements	Document	(TRD).Technical	design.	This	contains	a	technical	description	of	the	solution	to	the	requirements	outlined	in	the	previous	steps.	The	TDD	is	the	output	of	this	step.Implementation.	This	is	the	stage	where	the	solution	is	actually	built.Testing.	The	system	is	tested	against	the	PRD	and	TRD	to
ensure	that	it	actually	fulfills	the	specified	requirements.Between	each	of	these	stages	there	is	typically	a	review	process	to	ensure	that	no	mistakes	were	made.	If	any	errors,	misunderstandings,	or	ambiguities	are	detected,	these	must	be	corrected	before	proceeding	to	the	next	step.This	process	is	highly	variable;	the	set	of	steps	listed	here	will
change	on	a	case-by-case	basis.	For	example:For	smaller	features	that	dont	involve	a	lot	of	complexity,	steps	2	and	3	will	often	be	combined	into	a	single	document.If	the	feature	involves	a	large	number	of	unknowns	or	some	level	of	research,	it	may	be	necessary	to	construct	a	proof-of-concept	implementation	before	finalizing	the	technical	design.This
process	also	happens	at	different	scales	and	levels	of	granularity.	A	PRD	/	TRD	/	TDD	may	concern	the	design	of	an	entire	system,	or	just	a	single	feature.	In	most	environments,	the	process	is	also	cyclic	each	design/implement	cycle	builds	on	the	work	of	the	previous	one.The	dividing	line	between	TRD	and	TDD	can	be	a	bit	blurry	at	times.	For
example,	suppose	you	are	developing	a	server	that	communicates	via	a	RESTful	API.	If	the	goal	is	to	conform	to	an	already-established	and	documented	API,	then	the	API	specification	is	part	of	the	requirements	and	should	be	referenced	in	the	TRD.	If,	on	the	other	hand,	the	goal	is	to	develop	a	brand	new	API,	then	the	API	specification	is	part	of	the
design	and	should	be	described	in	the	TDD.	(However,	the	requirements	document	still	needs	to	specify	what	the	API	is	trying	to	accomplish.)Writing	the	TDDThese	days,	it	is	common	practice	to	write	technical	docs	in	a	collaborative	document	system,	such	as	Google	Docs	or	Confluence;	however	this	is	not	an	absolute	requirement.	The	important
thing	is	that	there	be	a	way	for	your	team	members	to	be	able	to	make	comments	on	the	document	and	point	out	errors	and	omissions.Most	TDDs	are	between	one	and	ten	pages.	Although	theres	no	upper	limit	to	the	length	of	a	TDD,	very	large	documents	will	be	both	difficult	to	edit	and	hard	for	readers	to	absorb;	consider	breaking	it	up	into
separate	documents	representing	individual	steps	or	phases	of	the	implementation.Diagrams	are	helpful;	there	are	a	number	of	online	tools	that	you	can	use	to	embed	illustrations	into	the	document,	such	as	draw.io	or	Lucidchart.	You	can	also	use	offline	tools	such	as	Inkscape	to	generate	SVG	diagrams.The	document	should	be	thorough;	ideally,	it
should	be	possible	for	someone	other	than	the	TDD	author	to	implement	the	design	as	written.	For	example,	if	the	design	specifies	an	implementation	of	an	API,	each	API	endpoint	should	be	documented.	If	there	are	subtle	design	choices,	they	should	be	called	out.Avoid	Common	Writing	MistakesProbably	the	most	common	mistake	that	I	encounter	in
TDDs	is	a	lack	of	context.	That	is,	the	author	wrote	down,	in	as	few	words	as	they	could	manage,	how	they	solved	the	problem;	but	they	didnt	include	any	information	on	what	the	problem	was,	why	it	needed	to	be	solved,	or	what	were	the	consequences	of	picking	that	particular	solution.Also,	its	important	to	keep	in	mind	who	the	likely	reader	is,	and
what	level	of	understanding	they	have.	If	you	use	a	term	that	the	reader	might	not	know,	dont	be	afraid	to	add	a	definition	for	it.It	hardly	needs	to	be	stated	that	good	grammar	and	spelling	are	helpful.	Also,	avoid	the	temptation	for	wordplay	or	cute	spelling;	while	programmers	as	a	class	tend	to	like	playing	around	with	language,	Ive	seen	more	than
one	case	where	excessive	frivolity	ended	up	costing	the	team	wasted	effort	because	of	misunderstandings.	Its	all	right	to	use	occasional	humor	or	choose	colorful,	memorable	names	for	features	and	systems,	since	that	helps	people	remember	them.	But	dont	let	your	desire	to	show	off	how	clever	you	are	become	a	distraction.Speaking	of	names,	choose
them	carefully;	as	Mark	Twain	once	wrote,	Choose	the	right	word,	not	its	second	cousin.	Theres	a	tendency	for	engineers	with	poor	vocabularies	to	use	the	same	generic	terms	over	and	over	again	for	different	things,	leading	to	overloading	and	confusion.	For	example,	naming	a	class	DataManager	is	vague	and	tells	you	nothing	about	what	it	actually
does;	by	the	same	token	a	package	or	directory	named	utils	could	contain	virtually	anything.	Consult	a	thesaurus	if	you	need	to	find	a	better	word,	or	better,	a	specialized	synonym	database	such	as	WordNet.TDD	TemplateWhen	writing	a	TDD,	it	can	be	helpful	to	start	with	a	standard	template.	The	following	is	a	template	that	I	have	used	in	a	number
of	projects.	Note	that	this	template	should	be	customized	where	needed;	you	are	free	to	delete	sections	which	dont	apply,	add	additional	sections,	or	rename	headings	as	appropriate.Author:	IntroductionWhat	are	you	trying	to	accomplish?	Whats	wrong	with	things	the	way	they	are	now?BackgroundDescribe	any	historical	context	that	would	be	needed
to	understand	the	document,	including	legacy	considerations.TerminologyIf	the	document	uses	any	special	words	or	terms,	list	them	here.Non-GoalsIf	there	are	related	problems	that	you	have	decided	not	to	address	with	this	design,	but	which	someone	might	conceivably	expect	you	to	solve,	then	list	them	here.Proposed	DesignStart	with	a	brief,	high-
level	description	of	the	solution.	The	following	sections	will	go	into	more	detail.System	ArchitectureIf	the	design	consists	of	a	collaboration	between	multiple	large-scale	components,	list	those	components	here	or	better,	include	a	diagram.Data	ModelDescribe	how	the	data	is	stored.	This	could	include	a	description	of	the	database
schema.Interface/API	DefinitionsDescribe	how	the	various	components	talk	to	each	other.	For	example,	if	there	are	REST	endpoints,	describe	the	endpoint	URL	and	the	format	of	the	data	and	parameters	used.Business	LogicIf	the	design	requires	any	non-trivial	algorithms	or	logic,	describe	them.Migration	StrategyIf	the	design	incurs	non-backwards-
compatible	changes	to	an	existing	system,	describe	the	process	whereby	entities	that	depend	on	the	system	are	going	to	migrate	to	the	new	design.ImpactDescribe	the	potential	impacts	of	the	design	on	overall	performance,	security,	and	other	aspects	of	the	system.RisksIf	there	are	any	risks	or	unknowns,	list	them	here.	Also	if	there	is	additional
research	to	be	done,	mention	that	as	well.AlternativesIf	there	are	other	potential	solutions	which	were	considered	and	rejected,	list	them	here,	as	well	as	the	reason	why	they	were	not	chosen.Of	course,	these	sections	are	only	starting	points.	You	can	add	additional	sections	such	as	Design	Considerations,	Abstract,	References,	Acknowledgements,	and
so	on	as	appropriate.TDD	LifecycleDuring	construction	of	the	system,	the	TDD	serves	as	a	reference,	coordinating	the	activities	of	the	team	members	working	on	the	project.	However,	after	construction	is	finished,	the	TDD	will	continue	to	exist	and	serve	as	documentation	for	how	the	system	works.	You	may	want	to	distinguish	between	current	and
archived	TDDs.However,	there	are	two	perils	to	watch	out	for:First,	TDDs	can	quickly	become	out	of	date	as	the	system	continues	to	evolve.	An	engineer	using	a	two-year-old	TDD	as	a	reference	can	waste	a	lot	of	time	trying	to	understand	why	the	system	doesnt	behave	as	described.	Ideally,	stale	TDDs	would	be	marked	as	obsolete	or	superseded;	in
practice	this	seldom	happens,	as	teams	tend	to	focus	on	current	rather	than	past	work.	(Keeping	documentation	up	to	date	is	a	challenge	that	every	engineering	team	struggles	with.)Second,	a	TDD	may	not	include	all	of	the	information	needed	to	interface	with	the	system.	A	TDD	might	only	cover	a	set	of	changes	to	an	already-existing	system,	in
which	case	you	would	need	to	consult	earlier	documentation	(if	it	exists)	to	get	the	whole	picture.	And	a	TDD	mainly	focuses	on	implementation	details,	which	may	be	irrelevant	to	someone	who	simply	wants	to	invoke	an	API.Thus,	a	TDD	should	not	be	considered	an	adequate	substitute	for	actual	user	or	API	reference	docs.FinallyThere	are	plenty	of
other	articles	on	the	web	explaining	how	to	write	a	great	design	doc.	Dont	just	read	this	one!	Read	several,	and	then	pick	a	mix	of	ideas	that	is	right	for	you.UpdateTheres	a	follow-on	article,	Writing	Technical	Design	Documents,	Revisited,	that	provides	some	additional	information.More	Essays	by	Talin:An	important	skill	for	any	software	engineer	is
writing	technical	design	docs	(TDDs),	also	referred	to	as	engineering	design	docs	(EDDs).	Here	in	this	article	I	offer	some	advice	for	writing	good	design	docs	and	what	mistakes	to	avoid.One	caveat:	Different	teams	will	have	different	standards	and	conventions	for	technical	design.	There	is	no	industry-wide	standard	for	the	design	process,	nor	could
there	be,	as	different	development	teams	will	have	different	needs	depending	on	their	situation.	What	I	will	describe	is	one	possible	answer,	based	on	my	own	experience.Design	ProcessLets	start	with	the	basics:	What	is	a	technical	design	doc,	and	how	does	it	fit	in	to	the	design	process?A	technical	design	doc	describes	a	solution	to	a	given	technical
problem.	It	is	a	specification,	or	design	blueprint,	for	a	software	program	or	feature.The	primary	function	of	a	TDD	is	to	communicate	the	technical	details	of	the	work	to	be	done	to	members	of	the	team.	However,	there	is	a	second	purpose	which	is	just	as	important:	the	process	of	writing	the	TDD	forces	you	to	organize	your	thoughts	and	consider
every	aspect	of	the	design,	ensuring	that	you	havent	left	anything	out.Technical	design	docs	are	often	part	of	a	larger	process	which	typically	has	the	following	steps:Product	requirements	are	defined.	These	will	typically	be	represented	by	a	Product	Requirements	Document	(PRD).	The	PRD	specifies	what	the	system	needs	to	do,	from	the	perspective
of	a	user	or	outside	agent.Technical	requirements	are	defined.	The	product	requirements	are	translated	into	technical	requirements	what	the	system	needs	to	accomplish,	but	now	how	it	does	it.	The	output	of	this	step	is	a	Technical	Requirements	Document	(TRD).Technical	design.	This	contains	a	technical	description	of	the	solution	to	the
requirements	outlined	in	the	previous	steps.	The	TDD	is	the	output	of	this	step.Implementation.	This	is	the	stage	where	the	solution	is	actually	built.Testing.	The	system	is	tested	against	the	PRD	and	TRD	to	ensure	that	it	actually	fulfills	the	specified	requirements.Between	each	of	these	stages	there	is	typically	a	review	process	to	ensure	that	no
mistakes	were	made.	If	any	errors,	misunderstandings,	or	ambiguities	are	detected,	these	must	be	corrected	before	proceeding	to	the	next	step.This	process	is	highly	variable;	the	set	of	steps	listed	here	will	change	on	a	case-by-case	basis.	For	example:For	smaller	features	that	dont	involve	a	lot	of	complexity,	steps	2	and	3	will	often	be	combined	into
a	single	document.If	the	feature	involves	a	large	number	of	unknowns	or	some	level	of	research,	it	may	be	necessary	to	construct	a	proof-of-concept	implementation	before	finalizing	the	technical	design.This	process	also	happens	at	different	scales	and	levels	of	granularity.	A	PRD	/	TRD	/	TDD	may	concern	the	design	of	an	entire	system,	or	just	a
single	feature.	In	most	environments,	the	process	is	also	cyclic	each	design/implement	cycle	builds	on	the	work	of	the	previous	one.The	dividing	line	between	TRD	and	TDD	can	be	a	bit	blurry	at	times.	For	example,	suppose	you	are	developing	a	server	that	communicates	via	a	RESTful	API.	If	the	goal	is	to	conform	to	an	already-established	and
documented	API,	then	the	API	specification	is	part	of	the	requirements	and	should	be	referenced	in	the	TRD.	If,	on	the	other	hand,	the	goal	is	to	develop	a	brand	new	API,	then	the	API	specification	is	part	of	the	design	and	should	be	described	in	the	TDD.	(However,	the	requirements	document	still	needs	to	specify	what	the	API	is	trying	to
accomplish.)Writing	the	TDDThese	days,	it	is	common	practice	to	write	technical	docs	in	a	collaborative	document	system,	such	as	Google	Docs	or	Confluence;	however	this	is	not	an	absolute	requirement.	The	important	thing	is	that	there	be	a	way	for	your	team	members	to	be	able	to	make	comments	on	the	document	and	point	out	errors	and
omissions.Most	TDDs	are	between	one	and	ten	pages.	Although	theres	no	upper	limit	to	the	length	of	a	TDD,	very	large	documents	will	be	both	difficult	to	edit	and	hard	for	readers	to	absorb;	consider	breaking	it	up	into	separate	documents	representing	individual	steps	or	phases	of	the	implementation.Diagrams	are	helpful;	there	are	a	number	of
online	tools	that	you	can	use	to	embed	illustrations	into	the	document,	such	as	draw.io	or	Lucidchart.	You	can	also	use	offline	tools	such	as	Inkscape	to	generate	SVG	diagrams.The	document	should	be	thorough;	ideally,	it	should	be	possible	for	someone	other	than	the	TDD	author	to	implement	the	design	as	written.	For	example,	if	the	design	specifies
an	implementation	of	an	API,	each	API	endpoint	should	be	documented.	If	there	are	subtle	design	choices,	they	should	be	called	out.Avoid	Common	Writing	MistakesProbably	the	most	common	mistake	that	I	encounter	in	TDDs	is	a	lack	of	context.	That	is,	the	author	wrote	down,	in	as	few	words	as	they	could	manage,	how	they	solved	the	problem;	but
they	didnt	include	any	information	on	what	the	problem	was,	why	it	needed	to	be	solved,	or	what	were	the	consequences	of	picking	that	particular	solution.Also,	its	important	to	keep	in	mind	who	the	likely	reader	is,	and	what	level	of	understanding	they	have.	If	you	use	a	term	that	the	reader	might	not	know,	dont	be	afraid	to	add	a	definition	for	it.It
hardly	needs	to	be	stated	that	good	grammar	and	spelling	are	helpful.	Also,	avoid	the	temptation	for	wordplay	or	cute	spelling;	while	programmers	as	a	class	tend	to	like	playing	around	with	language,	Ive	seen	more	than	one	case	where	excessive	frivolity	ended	up	costing	the	team	wasted	effort	because	of	misunderstandings.	Its	all	right	to	use
occasional	humor	or	choose	colorful,	memorable	names	for	features	and	systems,	since	that	helps	people	remember	them.	But	dont	let	your	desire	to	show	off	how	clever	you	are	become	a	distraction.Speaking	of	names,	choose	them	carefully;	as	Mark	Twain	once	wrote,	Choose	the	right	word,	not	its	second	cousin.	Theres	a	tendency	for	engineers
with	poor	vocabularies	to	use	the	same	generic	terms	over	and	over	again	for	different	things,	leading	to	overloading	and	confusion.	For	example,	naming	a	class	DataManager	is	vague	and	tells	you	nothing	about	what	it	actually	does;	by	the	same	token	a	package	or	directory	named	utils	could	contain	virtually	anything.	Consult	a	thesaurus	if	you
need	to	find	a	better	word,	or	better,	a	specialized	synonym	database	such	as	WordNet.TDD	TemplateWhen	writing	a	TDD,	it	can	be	helpful	to	start	with	a	standard	template.	The	following	is	a	template	that	I	have	used	in	a	number	of	projects.	Note	that	this	template	should	be	customized	where	needed;	you	are	free	to	delete	sections	which	dont
apply,	add	additional	sections,	or	rename	headings	as	appropriate.Author:	IntroductionWhat	are	you	trying	to	accomplish?	Whats	wrong	with	things	the	way	they	are	now?BackgroundDescribe	any	historical	context	that	would	be	needed	to	understand	the	document,	including	legacy	considerations.TerminologyIf	the	document	uses	any	special	words
or	terms,	list	them	here.Non-GoalsIf	there	are	related	problems	that	you	have	decided	not	to	address	with	this	design,	but	which	someone	might	conceivably	expect	you	to	solve,	then	list	them	here.Proposed	DesignStart	with	a	brief,	high-level	description	of	the	solution.	The	following	sections	will	go	into	more	detail.System	ArchitectureIf	the	design
consists	of	a	collaboration	between	multiple	large-scale	components,	list	those	components	here	or	better,	include	a	diagram.Data	ModelDescribe	how	the	data	is	stored.	This	could	include	a	description	of	the	database	schema.Interface/API	DefinitionsDescribe	how	the	various	components	talk	to	each	other.	For	example,	if	there	are	REST	endpoints,
describe	the	endpoint	URL	and	the	format	of	the	data	and	parameters	used.Business	LogicIf	the	design	requires	any	non-trivial	algorithms	or	logic,	describe	them.Migration	StrategyIf	the	design	incurs	non-backwards-compatible	changes	to	an	existing	system,	describe	the	process	whereby	entities	that	depend	on	the	system	are	going	to	migrate	to
the	new	design.ImpactDescribe	the	potential	impacts	of	the	design	on	overall	performance,	security,	and	other	aspects	of	the	system.RisksIf	there	are	any	risks	or	unknowns,	list	them	here.	Also	if	there	is	additional	research	to	be	done,	mention	that	as	well.AlternativesIf	there	are	other	potential	solutions	which	were	considered	and	rejected,	list	them
here,	as	well	as	the	reason	why	they	were	not	chosen.Of	course,	these	sections	are	only	starting	points.	You	can	add	additional	sections	such	as	Design	Considerations,	Abstract,	References,	Acknowledgements,	and	so	on	as	appropriate.TDD	LifecycleDuring	construction	of	the	system,	the	TDD	serves	as	a	reference,	coordinating	the	activities	of	the
team	members	working	on	the	project.	However,	after	construction	is	finished,	the	TDD	will	continue	to	exist	and	serve	as	documentation	for	how	the	system	works.	You	may	want	to	distinguish	between	current	and	archived	TDDs.However,	there	are	two	perils	to	watch	out	for:First,	TDDs	can	quickly	become	out	of	date	as	the	system	continues	to
evolve.	An	engineer	using	a	two-year-old	TDD	as	a	reference	can	waste	a	lot	of	time	trying	to	understand	why	the	system	doesnt	behave	as	described.	Ideally,	stale	TDDs	would	be	marked	as	obsolete	or	superseded;	in	practice	this	seldom	happens,	as	teams	tend	to	focus	on	current	rather	than	past	work.	(Keeping	documentation	up	to	date	is	a
challenge	that	every	engineering	team	struggles	with.)Second,	a	TDD	may	not	include	all	of	the	information	needed	to	interface	with	the	system.	A	TDD	might	only	cover	a	set	of	changes	to	an	already-existing	system,	in	which	case	you	would	need	to	consult	earlier	documentation	(if	it	exists)	to	get	the	whole	picture.	And	a	TDD	mainly	focuses	on
implementation	details,	which	may	be	irrelevant	to	someone	who	simply	wants	to	invoke	an	API.Thus,	a	TDD	should	not	be	considered	an	adequate	substitute	for	actual	user	or	API	reference	docs.FinallyThere	are	plenty	of	other	articles	on	the	web	explaining	how	to	write	a	great	design	doc.	Dont	just	read	this	one!	Read	several,	and	then	pick	a	mix	of
ideas	that	is	right	for	you.UpdateTheres	a	follow-on	article,	Writing	Technical	Design	Documents,	Revisited,	that	provides	some	additional	information.More	Essays	by	Talin:An	important	skill	for	any	software	engineer	is	writing	technical	design	docs	(TDDs),	also	referred	to	as	engineering	design	docs	(EDDs).	Here	in	this	article	I	offer	some	advice	for
writing	good	design	docs	and	what	mistakes	to	avoid.One	caveat:	Different	teams	will	have	different	standards	and	conventions	for	technical	design.	There	is	no	industry-wide	standard	for	the	design	process,	nor	could	there	be,	as	different	development	teams	will	have	different	needs	depending	on	their	situation.	What	I	will	describe	is	one	possible
answer,	based	on	my	own	experience.Design	ProcessLets	start	with	the	basics:	What	is	a	technical	design	doc,	and	how	does	it	fit	in	to	the	design	process?A	technical	design	doc	describes	a	solution	to	a	given	technical	problem.	It	is	a	specification,	or	design	blueprint,	for	a	software	program	or	feature.The	primary	function	of	a	TDD	is	to
communicate	the	technical	details	of	the	work	to	be	done	to	members	of	the	team.	However,	there	is	a	second	purpose	which	is	just	as	important:	the	process	of	writing	the	TDD	forces	you	to	organize	your	thoughts	and	consider	every	aspect	of	the	design,	ensuring	that	you	havent	left	anything	out.Technical	design	docs	are	often	part	of	a	larger
process	which	typically	has	the	following	steps:Product	requirements	are	defined.	These	will	typically	be	represented	by	a	Product	Requirements	Document	(PRD).	The	PRD	specifies	what	the	system	needs	to	do,	from	the	perspective	of	a	user	or	outside	agent.Technical	requirements	are	defined.	The	product	requirements	are	translated	into	technical
requirements	what	the	system	needs	to	accomplish,	but	now	how	it	does	it.	The	output	of	this	step	is	a	Technical	Requirements	Document	(TRD).Technical	design.	This	contains	a	technical	description	of	the	solution	to	the	requirements	outlined	in	the	previous	steps.	The	TDD	is	the	output	of	this	step.Implementation.	This	is	the	stage	where	the
solution	is	actually	built.Testing.	The	system	is	tested	against	the	PRD	and	TRD	to	ensure	that	it	actually	fulfills	the	specified	requirements.Between	each	of	these	stages	there	is	typically	a	review	process	to	ensure	that	no	mistakes	were	made.	If	any	errors,	misunderstandings,	or	ambiguities	are	detected,	these	must	be	corrected	before	proceeding	to
the	next	step.This	process	is	highly	variable;	the	set	of	steps	listed	here	will	change	on	a	case-by-case	basis.	For	example:For	smaller	features	that	dont	involve	a	lot	of	complexity,	steps	2	and	3	will	often	be	combined	into	a	single	document.If	the	feature	involves	a	large	number	of	unknowns	or	some	level	of	research,	it	may	be	necessary	to	construct
a	proof-of-concept	implementation	before	finalizing	the	technical	design.This	process	also	happens	at	different	scales	and	levels	of	granularity.	A	PRD	/	TRD	/	TDD	may	concern	the	design	of	an	entire	system,	or	just	a	single	feature.	In	most	environments,	the	process	is	also	cyclic	each	design/implement	cycle	builds	on	the	work	of	the	previous	one.The
dividing	line	between	TRD	and	TDD	can	be	a	bit	blurry	at	times.	For	example,	suppose	you	are	developing	a	server	that	communicates	via	a	RESTful	API.	If	the	goal	is	to	conform	to	an	already-established	and	documented	API,	then	the	API	specification	is	part	of	the	requirements	and	should	be	referenced	in	the	TRD.	If,	on	the	other	hand,	the	goal	is
to	develop	a	brand	new	API,	then	the	API	specification	is	part	of	the	design	and	should	be	described	in	the	TDD.	(However,	the	requirements	document	still	needs	to	specify	what	the	API	is	trying	to	accomplish.)Writing	the	TDDThese	days,	it	is	common	practice	to	write	technical	docs	in	a	collaborative	document	system,	such	as	Google	Docs	or
Confluence;	however	this	is	not	an	absolute	requirement.	The	important	thing	is	that	there	be	a	way	for	your	team	members	to	be	able	to	make	comments	on	the	document	and	point	out	errors	and	omissions.Most	TDDs	are	between	one	and	ten	pages.	Although	theres	no	upper	limit	to	the	length	of	a	TDD,	very	large	documents	will	be	both	difficult	to
edit	and	hard	for	readers	to	absorb;	consider	breaking	it	up	into	separate	documents	representing	individual	steps	or	phases	of	the	implementation.Diagrams	are	helpful;	there	are	a	number	of	online	tools	that	you	can	use	to	embed	illustrations	into	the	document,	such	as	draw.io	or	Lucidchart.	You	can	also	use	offline	tools	such	as	Inkscape	to
generate	SVG	diagrams.The	document	should	be	thorough;	ideally,	it	should	be	possible	for	someone	other	than	the	TDD	author	to	implement	the	design	as	written.	For	example,	if	the	design	specifies	an	implementation	of	an	API,	each	API	endpoint	should	be	documented.	If	there	are	subtle	design	choices,	they	should	be	called	out.Avoid	Common
Writing	MistakesProbably	the	most	common	mistake	that	I	encounter	in	TDDs	is	a	lack	of	context.	That	is,	the	author	wrote	down,	in	as	few	words	as	they	could	manage,	how	they	solved	the	problem;	but	they	didnt	include	any	information	on	what	the	problem	was,	why	it	needed	to	be	solved,	or	what	were	the	consequences	of	picking	that	particular
solution.Also,	its	important	to	keep	in	mind	who	the	likely	reader	is,	and	what	level	of	understanding	they	have.	If	you	use	a	term	that	the	reader	might	not	know,	dont	be	afraid	to	add	a	definition	for	it.It	hardly	needs	to	be	stated	that	good	grammar	and	spelling	are	helpful.	Also,	avoid	the	temptation	for	wordplay	or	cute	spelling;	while	programmers
as	a	class	tend	to	like	playing	around	with	language,	Ive	seen	more	than	one	case	where	excessive	frivolity	ended	up	costing	the	team	wasted	effort	because	of	misunderstandings.	Its	all	right	to	use	occasional	humor	or	choose	colorful,	memorable	names	for	features	and	systems,	since	that	helps	people	remember	them.	But	dont	let	your	desire	to
show	off	how	clever	you	are	become	a	distraction.Speaking	of	names,	choose	them	carefully;	as	Mark	Twain	once	wrote,	Choose	the	right	word,	not	its	second	cousin.	Theres	a	tendency	for	engineers	with	poor	vocabularies	to	use	the	same	generic	terms	over	and	over	again	for	different	things,	leading	to	overloading	and	confusion.	For	example,
naming	a	class	DataManager	is	vague	and	tells	you	nothing	about	what	it	actually	does;	by	the	same	token	a	package	or	directory	named	utils	could	contain	virtually	anything.	Consult	a	thesaurus	if	you	need	to	find	a	better	word,	or	better,	a	specialized	synonym	database	such	as	WordNet.TDD	TemplateWhen	writing	a	TDD,	it	can	be	helpful	to	start
with	a	standard	template.	The	following	is	a	template	that	I	have	used	in	a	number	of	projects.	Note	that	this	template	should	be	customized	where	needed;	you	are	free	to	delete	sections	which	dont	apply,	add	additional	sections,	or	rename	headings	as	appropriate.Author:	IntroductionWhat	are	you	trying	to	accomplish?	Whats	wrong	with	things	the
way	they	are	now?BackgroundDescribe	any	historical	context	that	would	be	needed	to	understand	the	document,	including	legacy	considerations.TerminologyIf	the	document	uses	any	special	words	or	terms,	list	them	here.Non-GoalsIf	there	are	related	problems	that	you	have	decided	not	to	address	with	this	design,	but	which	someone	might
conceivably	expect	you	to	solve,	then	list	them	here.Proposed	DesignStart	with	a	brief,	high-level	description	of	the	solution.	The	following	sections	will	go	into	more	detail.System	ArchitectureIf	the	design	consists	of	a	collaboration	between	multiple	large-scale	components,	list	those	components	here	or	better,	include	a	diagram.Data	ModelDescribe
how	the	data	is	stored.	This	could	include	a	description	of	the	database	schema.Interface/API	DefinitionsDescribe	how	the	various	components	talk	to	each	other.	For	example,	if	there	are	REST	endpoints,	describe	the	endpoint	URL	and	the	format	of	the	data	and	parameters	used.Business	LogicIf	the	design	requires	any	non-trivial	algorithms	or
logic,	describe	them.Migration	StrategyIf	the	design	incurs	non-backwards-compatible	changes	to	an	existing	system,	describe	the	process	whereby	entities	that	depend	on	the	system	are	going	to	migrate	to	the	new	design.ImpactDescribe	the	potential	impacts	of	the	design	on	overall	performance,	security,	and	other	aspects	of	the	system.RisksIf
there	are	any	risks	or	unknowns,	list	them	here.	Also	if	there	is	additional	research	to	be	done,	mention	that	as	well.AlternativesIf	there	are	other	potential	solutions	which	were	considered	and	rejected,	list	them	here,	as	well	as	the	reason	why	they	were	not	chosen.Of	course,	these	sections	are	only	starting	points.	You	can	add	additional	sections
such	as	Design	Considerations,	Abstract,	References,	Acknowledgements,	and	so	on	as	appropriate.TDD	LifecycleDuring	construction	of	the	system,	the	TDD	serves	as	a	reference,	coordinating	the	activities	of	the	team	members	working	on	the	project.	However,	after	construction	is	finished,	the	TDD	will	continue	to	exist	and	serve	as	documentation
for	how	the	system	works.	You	may	want	to	distinguish	between	current	and	archived	TDDs.However,	there	are	two	perils	to	watch	out	for:First,	TDDs	can	quickly	become	out	of	date	as	the	system	continues	to	evolve.	An	engineer	using	a	two-year-old	TDD	as	a	reference	can	waste	a	lot	of	time	trying	to	understand	why	the	system	doesnt	behave	as
described.	Ideally,	stale	TDDs	would	be	marked	as	obsolete	or	superseded;	in	practice	this	seldom	happens,	as	teams	tend	to	focus	on	current	rather	than	past	work.	(Keeping	documentation	up	to	date	is	a	challenge	that	every	engineering	team	struggles	with.)Second,	a	TDD	may	not	include	all	of	the	information	needed	to	interface	with	the	system.
A	TDD	might	only	cover	a	set	of	changes	to	an	already-existing	system,	in	which	case	you	would	need	to	consult	earlier	documentation	(if	it	exists)	to	get	the	whole	picture.	And	a	TDD	mainly	focuses	on	implementation	details,	which	may	be	irrelevant	to	someone	who	simply	wants	to	invoke	an	API.Thus,	a	TDD	should	not	be	considered	an	adequate
substitute	for	actual	user	or	API	reference	docs.FinallyThere	are	plenty	of	other	articles	on	the	web	explaining	how	to	write	a	great	design	doc.	Dont	just	read	this	one!	Read	several,	and	then	pick	a	mix	of	ideas	that	is	right	for	you.UpdateTheres	a	follow-on	article,	Writing	Technical	Design	Documents,	Revisited,	that	provides	some	additional
information.More	Essays	by	Talin:As	a	software	engineer,	your	primary	role	is	to	solve	technical	problems.	Your	first	impulse	may	be	to	immediately	jump	straight	into	writing	code.	But	that	can	be	a	terrible	idea	if	you	havent	thought	through	your	solution.You	can	think	through	difficult	technical	problems	by	writing	a	technical	spec.	Writing	one	can
be	frustrating	if	you	feel	like	youre	not	a	good	writer.	You	may	even	think	that	its	an	unnecessary	chore.	But	writing	a	technical	spec	increases	the	chances	of	having	a	successful	project,	service,	or	feature	that	all	stakeholders	involved	are	satisfied	with.	It	decreases	the	chances	of	something	going	horribly	wrong	during	implementation	and	even
after	youve	launched	your	product.In	this	article,	Ill	walk	you	through	how	to	write	a	technical	spec	that	ensures	a	strong	product.A	technical	specification	document	outlines	how	youre	going	to	address	a	technical	problem	by	designing	and	building	a	solution	for	it.	Its	sometimes	also	referred	to	as	a	technical	design	document,	a	software	design
document,	or	an	engineering	design	document.	Its	often	written	by	the	engineer	who	will	build	the	solution	or	be	the	point	person	during	implementation,	but	for	larger	projects,	it	can	be	written	by	technical	leads,	project	leads,	or	senior	engineers.	These	documents	show	the	engineers	team	and	other	stakeholders	what	the	design,	work	involved,
impact,	and	timeline	of	a	feature,	project,	program,	or	service	will	be.Technical	specs	have	immense	benefits	to	everyone	involved	in	a	project:	the	engineers	who	write	them,	the	teams	that	use	them,	even	the	projects	that	are	designed	off	of	them.	Here	are	some	reasons	why	you	should	write	one.By	writing	a	technical	spec,	engineers	are	forced	to
examine	a	problem	before	going	straight	into	code,	where	they	may	overlook	some	aspect	of	the	solution.	When	you	break	down,	organize,	and	time	box	all	the	work	youll	have	to	do	during	the	implementation,	you	get	a	better	view	of	the	scope	of	the	solution.	Technical	specs,	because	they	are	a	thorough	view	of	the	proposed	solution,	they	also	serve
as	documentation	for	the	project,	both	for	the	implementation	phase	and	after,	to	communicate	your	accomplishments	on	the	project.With	this	well-thought	out	solution,	your	technical	spec	saves	you	from	repeatedly	explaining	your	design	to	multiple	teammates	and	stakeholders.	But	nobodys	perfect;	your	peers	and	more	seasoned	engineers	may
show	you	new	things	from	them	about	design,	new	technologies,	engineering	practices,	alternative	solutions,	etc.	that	you	may	not	have	come	across	or	thought	of	before.	They	may	catch	exceptional	cases	of	the	solution	that	you	may	have	neglected,	reducing	your	liability.	The	more	eyes	you	have	on	your	spec,	the	better.A	technical	spec	is	a
straightforward	and	efficient	way	to	communicate	project	design	ideas	between	a	team	and	other	stakeholders.	The	whole	team	can	collaboratively	solve	a	problem	and	create	a	solution.	As	more	teammates	and	stakeholders	contribute	to	a	spec,	it	makes	them	more	invested	in	the	project	and	encourages	them	to	take	ownership	and	responsibility	for
it.	With	everyone	on	the	same	page,	it	limits	complications	that	may	arise	from	overlapping	work.	Newer	teammates	unfamiliar	with	the	project	can	onboard	themselves	and	contribute	to	the	implementation	earlier.Investing	in	a	technical	spec	ultimately	results	in	a	superior	product.	Since	the	team	is	aligned	and	in	agreement	on	what	needs	to	be
done	through	the	spec,	big	projects	can	progress	faster.	A	spec	is	essential	in	managing	complexity	and	preventing	scope	and	feature	creep	by	setting	project	limits.	It	sets	priorities	thereby	making	sure	that	only	the	most	impactful	and	urgent	parts	of	a	project	go	out	first.Post	implementation,	it	helps	resolve	problems	that	cropped	up	within	the
project,	as	well	as	provide	insight	in	retrospectives	and	postmortems.	The	best	planned	specs	serve	as	a	great	guide	for	measuring	success	and	return	on	investment	of	engineering	time.Gather	the	existing	information	in	the	problem	domain	before	getting	started.	Read	over	any	product/feature	requirements	that	the	product	team	has	produced,	as
well	as	technical	requirements/standards	associated	with	the	project.	With	this	knowledge	of	the	problem	history,	try	to	state	the	problem	in	detail	and	brainstorm	all	kinds	of	solutions	you	may	think	might	resolve	it.	Pick	the	most	reasonable	solution	out	of	all	the	options	you	have	come	up	with.Remember	that	you	arent	alone	in	this	task.	Ask	an
experienced	engineer	whos	knowledgeable	on	the	problem	to	be	your	sounding	board.	Invite	them	to	a	meeting	and	explain	the	problem	and	the	solution	you	picked.	Lay	out	your	ideas	and	thought	process	and	try	to	persuade	them	that	your	solution	is	the	most	appropriate.	Gather	their	feedback	and	ask	them	to	be	a	reviewer	for	your	technical
spec.Finally,	its	time	to	actually	write	the	spec.	Block	off	time	in	your	calendar	to	write	the	first	draft	of	the	technical	spec.	Usea	collaborative	document	editor	that	your	whole	team	has	access	to.	Get	a	technical	spec	template	(see	below)	and	write	a	rough	draft.There	are	a	wide	range	of	problems	being	solved	by	a	vast	number	of	companies	today.
Each	organization	is	distinct	and	creates	its	own	unique	engineering	culture.	As	a	result,	technical	specs	may	not	be	standard	even	within	companies,	divisions,	teams,	and	even	among	engineers	on	the	same	team.	Every	solution	has	different	needs	and	you	should	tailor	your	technical	spec	based	on	the	project.	You	do	not	need	to	include	all	the
sections	mentioned	below.	Select	the	sections	that	work	for	your	design	and	forego	the	rest.From	my	experience,	there	are	seven	essential	parts	of	a	technical	spec:	front	matter,	introduction,	solutions,	further	considerations,	success	evaluation,	work,	deliberation,	and	end	matter.TitleAuthor(s)TeamReviewer(s)Created	onLast	updatedEpic,	ticket,
issue,	or	task	tracker	reference	linka.	Overview,	Problem	Description,	Summary,	or	AbstractSummary	of	the	problem	(from	the	perspective	of	the	user),	the	context,	suggested	solution,	and	the	stakeholders.b.	Glossary	or	TerminologyNew	terms	you	come	across	as	you	research	your	design	or	terms	you	may	suspect	your	readers/stakeholders	not	to
know.c.	Context	or	BackgroundReasons	why	the	problem	is	worth	solvingOrigin	of	the	problemHow	the	problem	affects	users	and	company	goalsPast	efforts	made	to	solve	the	solution	and	why	they	were	not	effectiveHow	the	product	relates	to	team	goals,	OKRsHow	the	solution	fits	into	the	overall	product	roadmap	and	strategyHow	the	solution	fits
into	the	technical	strategyd.	Goals	or	Product	and	Technical	RequirementsProduct	requirements	in	the	form	of	user	storiesTechnical	requirementse.	Non-Goals	or	Out	of	ScopeProduct	and	technical	requirements	that	will	be	disregardedf.	Future	GoalsProduct	and	technical	requirements	slated	for	a	future	timeg.	AssumptionsConditions	and	resources
that	need	to	be	present	and	accessible	for	the	solution	to	work	as	described.a.	Current	or	Existing	Solution	/	DesignCurrent	solution	descriptionPros	and	cons	of	the	current	solutionb.	Suggested	or	Proposed	Solution	/	DesignExternal	components	that	the	solution	will	interact	with	and	that	it	will	alterDependencies	of	the	current	solutionPros	and	cons
of	the	proposed	solutionData	Model	/	Schema	Changes	Schema	definitionsNew	data	modelsModified	data	modelsData	validation	methodsBusiness	Logic	API	changesPseudocodeFlowchartsError	statesFailure	scenariosConditions	that	lead	to	errors	and	failuresLimitationsPresentation	Layer	User	requirementsUX	changesUI	changesWireframes	with
descriptionsLinks	to	UI/UX	designers	workMobile	concernsWeb	concernsUI	statesError	handlingOther	questions	to	answer	How	will	the	solution	scale?What	are	the	limitations	of	the	solution?How	will	it	recover	in	the	event	of	a	failure?How	will	it	cope	with	future	requirements?c.	Test	PlanExplanations	of	how	the	tests	will	make	sure	user
requirements	are	metUnit	testsIntegrations	testsQAd.	Monitoring	and	Alerting	PlanLogging	plan	and	toolsMonitoring	plan	and	toolsMetrics	to	be	used	to	measure	healthHow	to	ensure	observabilityAlerting	plan	and	toolse.	Release	/	Roll-out	and	Deployment	PlanDeployment	architectureDeployment	environmentsPhased	roll-out	plan	e.g.	using	feature
flagsPlan	outlining	how	to	communicate	changes	to	the	users,	for	example,	with	release	notesf.	Rollback	PlanDetailed	and	specific	liabilitiesPlan	to	reduce	liabilitiesPlan	describing	how	to	prevent	other	components,	services,	and	systems	from	being	affectedg.	Alternate	Solutions	/	DesignsShort	summary	statement	for	each	alternative	solutionPros	and
cons	for	each	alternativeReasons	why	each	solution	couldnt	workWays	in	which	alternatives	were	inferior	to	the	proposed	solutionMigration	plan	to	next	best	alternative	in	case	the	proposed	solution	falls	througha.	Impact	on	other	teamsHow	will	this	increase	the	work	of	other	people?b.	Third-party	services	and	platforms	considerationsIs	it	really
worth	it	compared	to	building	the	service	in-house?What	are	some	of	the	security	and	privacy	concerns	associated	with	the	services/platforms?How	much	will	it	cost?How	will	it	scale?What	possible	future	issues	are	anticipated?c.	Cost	analysisWhat	is	the	cost	to	run	the	solution	per	day?What	does	it	cost	to	roll	it	out?d.	Security	considerationsWhat
are	the	potential	threats?How	will	they	be	mitigated?How	will	the	solution	affect	the	security	of	other	components,	services,	and	systems?e.	Privacy	considerationsDoes	the	solution	follow	local	laws	and	legal	policies	on	data	privacy?How	does	the	solution	protect	users	data	privacy?What	are	some	of	the	tradeoffs	between	personalization	and	privacy
in	the	solution?f.	Regional	considerationsWhat	is	the	impact	of	internationalization	and	localization	on	the	solution?What	are	the	latency	issues?What	are	the	legal	concerns?What	is	the	state	of	service	availability?How	will	data	transfer	across	regions	be	achieved	and	what	are	the	concerns	here?g.	Accessibility	considerationsHow	accessible	is	the
solution?What	tools	will	you	use	to	evaluate	its	accessibility?h.	Operational	considerationsDoes	this	solution	cause	adverse	aftereffects?How	will	data	be	recovered	in	case	of	failure?How	will	the	solution	recover	in	case	of	a	failure?How	will	operational	costs	be	kept	low	while	delivering	increased	value	to	the	users?i.	RisksWhat	risks	are	being
undertaken	with	this	solution?Are	there	risks	that	once	taken	cant	be	walked	back?What	is	the	cost-benefit	analysis	of	taking	these	risks?j.	Support	considerationsHow	will	the	support	team	get	across	information	to	users	about	common	issues	they	may	face	while	interacting	with	the	changes?How	will	we	ensure	that	the	users	are	satisfied	with	the
solution	and	can	interact	with	it	with	minimal	support?Who	is	responsible	for	the	maintenance	of	the	solution?How	will	knowledge	transfer	be	accomplished	if	the	project	owner	is	unavailable?a.	ImpactSecurity	impactPerformance	impactCost	impactImpact	on	other	components	and	servicesb.	MetricsList	of	metrics	to	captureTools	to	capture	and
measure	metricsa.	Work	estimates	and	timelinesList	of	specific,	measurable,	and	time-bound	tasksResources	needed	to	finish	each	taskTime	estimates	for	how	long	each	task	needs	to	be	completedb.	PrioritizationCategorization	of	tasks	by	urgency	and	impactc.	MilestonesDated	checkpoints	when	significant	chunks	of	work	will	have	been
completedMetrics	to	indicate	the	passing	of	the	milestoned.	Future	workList	of	tasks	that	will	be	completed	in	the	futurea.	DiscussionElements	of	the	solution	that	members	of	the	team	do	not	agree	on	and	need	to	be	debated	further	to	reach	a	consensus.b.	Open	QuestionsQuestions	about	things	you	do	not	know	the	answers	to	or	are	unsure	that	you
pose	to	the	team	and	stakeholders	for	their	input.	These	may	include	aspects	of	the	problem	you	dont	know	how	to	resolve	yet.a.	Related	WorkAny	work	external	to	the	proposed	solution	that	is	similar	to	it	in	some	way	and	is	worked	on	by	different	teams.	Its	important	to	know	this	to	enable	knowledge	sharing	between	such	teams	when	faced	with
related	problems.b.	ReferencesLinks	to	documents	and	resources	that	you	used	when	coming	up	with	your	design	and	wish	to	credit.c.	AcknowledgmentsCredit	people	who	have	contributed	to	the	design	that	you	wish	to	recognize.Now	that	you	have	a	spec	written,	its	time	to	refine	it.	Go	through	your	draft	as	if	you	were	an	independent	reviewer.	Ask
yourself	what	parts	of	the	design	are	unclear	and	you	are	uncertain	about.	Modify	your	draft	to	include	these	issues.	Review	the	draft	a	second	time	as	if	you	were	tasked	to	implement	the	design	just	based	on	the	technical	spec	alone.	Make	sure	the	spec	is	a	clear	enough	implementation	guideline	that	the	team	can	work	on	if	you	are	unavailable.	If
you	have	doubts	about	the	solution	and	would	like	to	test	it	out	just	to	make	sure	it	works,	create	a	simple	prototype	to	prove	your	concept.When	youve	thoroughly	reviewed	it,	send	the	draft	out	to	your	team	and	the	stakeholders.	Address	all	comments,	questions,	and	suggestions	as	soon	as	possible.	Set	deadlines	to	do	this	for	every	issue.	Schedule
meetings	to	talk	through	issues	that	the	team	is	divided	on	or	is	having	unusually	lengthy	discussions	about	on	the	document.	If	the	team	fails	to	agree	on	an	issue	even	after	having	in-person	meetings	to	hash	them	out,	make	the	final	call	on	it	as	the	buck	stops	with	you.	Request	engineers	on	different	teams	to	review	your	spec	so	you	can	get	an
outsiders	perspective	which	will	enhance	how	it	comes	across	to	stakeholders	not	part	of	the	team.	Update	the	document	with	any	changes	in	the	design,	schedule,	work	estimates,	scope,	etc.	even	during	implementation.Writing	test	specs	can	be	an	impactful	way	to	guarantee	that	your	project	will	be	successful.	A	little	planning	and	a	little
forethought	can	make	the	actual	implementation	of	a	project	a	whole	lot	easier.A	curated	library	of	our	favorite	1000+	design	doc	examples	and	templates	from	40+	leading	engineering	organizations	and	open	source	projectsAn	important	skill	for	any	software	engineer	is	writing	technical	design	docs	(TDDs),	also	referred	to	as	engineering	design
docs	(EDDs).	Here	in	this	article	I	offer	some	advice	for	writing	good	design	docs	and	what	mistakes	to	avoid.One	caveat:	Different	teams	will	have	different	standards	and	conventions	for	technical	design.	There	is	no	industry-wide	standard	for	the	design	process,	nor	could	there	be,	as	different	development	teams	will	have	different	needs	depending
on	their	situation.	What	I	will	describe	is	one	possible	answer,	based	on	my	own	experience.Design	ProcessLets	start	with	the	basics:	What	is	a	technical	design	doc,	and	how	does	it	fit	in	to	the	design	process?A	technical	design	doc	describes	a	solution	to	a	given	technical	problem.	It	is	a	specification,	or	design	blueprint,	for	a	software	program	or
feature.The	primary	function	of	a	TDD	is	to	communicate	the	technical	details	of	the	work	to	be	done	to	members	of	the	team.	However,	there	is	a	second	purpose	which	is	just	as	important:	the	process	of	writing	the	TDD	forces	you	to	organize	your	thoughts	and	consider	every	aspect	of	the	design,	ensuring	that	you	havent	left	anything	out.Technical
design	docs	are	often	part	of	a	larger	process	which	typically	has	the	following	steps:Product	requirements	are	defined.	These	will	typically	be	represented	by	a	Product	Requirements	Document	(PRD).	The	PRD	specifies	what	the	system	needs	to	do,	from	the	perspective	of	a	user	or	outside	agent.Technical	requirements	are	defined.	The	product
requirements	are	translated	into	technical	requirements	what	the	system	needs	to	accomplish,	but	now	how	it	does	it.	The	output	of	this	step	is	a	Technical	Requirements	Document	(TRD).Technical	design.	This	contains	a	technical	description	of	the	solution	to	the	requirements	outlined	in	the	previous	steps.	The	TDD	is	the	output	of	this
step.Implementation.	This	is	the	stage	where	the	solution	is	actually	built.Testing.	The	system	is	tested	against	the	PRD	and	TRD	to	ensure	that	it	actually	fulfills	the	specified	requirements.Between	each	of	these	stages	there	is	typically	a	review	process	to	ensure	that	no	mistakes	were	made.	If	any	errors,	misunderstandings,	or	ambiguities	are
detected,	these	must	be	corrected	before	proceeding	to	the	next	step.This	process	is	highly	variable;	the	set	of	steps	listed	here	will	change	on	a	case-by-case	basis.	For	example:For	smaller	features	that	dont	involve	a	lot	of	complexity,	steps	2	and	3	will	often	be	combined	into	a	single	document.If	the	feature	involves	a	large	number	of	unknowns	or
some	level	of	research,	it	may	be	necessary	to	construct	a	proof-of-concept	implementation	before	finalizing	the	technical	design.This	process	also	happens	at	different	scales	and	levels	of	granularity.	A	PRD	/	TRD	/	TDD	may	concern	the	design	of	an	entire	system,	or	just	a	single	feature.	In	most	environments,	the	process	is	also	cyclic	each
design/implement	cycle	builds	on	the	work	of	the	previous	one.The	dividing	line	between	TRD	and	TDD	can	be	a	bit	blurry	at	times.	For	example,	suppose	you	are	developing	a	server	that	communicates	via	a	RESTful	API.	If	the	goal	is	to	conform	to	an	already-established	and	documented	API,	then	the	API	specification	is	part	of	the	requirements	and
should	be	referenced	in	the	TRD.	If,	on	the	other	hand,	the	goal	is	to	develop	a	brand	new	API,	then	the	API	specification	is	part	of	the	design	and	should	be	described	in	the	TDD.	(However,	the	requirements	document	still	needs	to	specify	what	the	API	is	trying	to	accomplish.)Writing	the	TDDThese	days,	it	is	common	practice	to	write	technical	docs
in	a	collaborative	document	system,	such	as	Google	Docs	or	Confluence;	however	this	is	not	an	absolute	requirement.	The	important	thing	is	that	there	be	a	way	for	your	team	members	to	be	able	to	make	comments	on	the	document	and	point	out	errors	and	omissions.Most	TDDs	are	between	one	and	ten	pages.	Although	theres	no	upper	limit	to	the
length	of	a	TDD,	very	large	documents	will	be	both	difficult	to	edit	and	hard	for	readers	to	absorb;	consider	breaking	it	up	into	separate	documents	representing	individual	steps	or	phases	of	the	implementation.Diagrams	are	helpful;	there	are	a	number	of	online	tools	that	you	can	use	to	embed	illustrations	into	the	document,	such	as	draw.io	or
Lucidchart.	You	can	also	use	offline	tools	such	as	Inkscape	to	generate	SVG	diagrams.The	document	should	be	thorough;	ideally,	it	should	be	possible	for	someone	other	than	the	TDD	author	to	implement	the	design	as	written.	For	example,	if	the	design	specifies	an	implementation	of	an	API,	each	API	endpoint	should	be	documented.	If	there	are
subtle	design	choices,	they	should	be	called	out.Avoid	Common	Writing	MistakesProbably	the	most	common	mistake	that	I	encounter	in	TDDs	is	a	lack	of	context.	That	is,	the	author	wrote	down,	in	as	few	words	as	they	could	manage,	how	they	solved	the	problem;	but	they	didnt	include	any	information	on	what	the	problem	was,	why	it	needed	to	be
solved,	or	what	were	the	consequences	of	picking	that	particular	solution.Also,	its	important	to	keep	in	mind	who	the	likely	reader	is,	and	what	level	of	understanding	they	have.	If	you	use	a	term	that	the	reader	might	not	know,	dont	be	afraid	to	add	a	definition	for	it.It	hardly	needs	to	be	stated	that	good	grammar	and	spelling	are	helpful.	Also,	avoid
the	temptation	for	wordplay	or	cute	spelling;	while	programmers	as	a	class	tend	to	like	playing	around	with	language,	Ive	seen	more	than	one	case	where	excessive	frivolity	ended	up	costing	the	team	wasted	effort	because	of	misunderstandings.	Its	all	right	to	use	occasional	humor	or	choose	colorful,	memorable	names	for	features	and	systems,	since
that	helps	people	remember	them.	But	dont	let	your	desire	to	show	off	how	clever	you	are	become	a	distraction.Speaking	of	names,	choose	them	carefully;	as	Mark	Twain	once	wrote,	Choose	the	right	word,	not	its	second	cousin.	Theres	a	tendency	for	engineers	with	poor	vocabularies	to	use	the	same	generic	terms	over	and	over	again	for	different
things,	leading	to	overloading	and	confusion.	For	example,	naming	a	class	DataManager	is	vague	and	tells	you	nothing	about	what	it	actually	does;	by	the	same	token	a	package	or	directory	named	utils	could	contain	virtually	anything.	Consult	a	thesaurus	if	you	need	to	find	a	better	word,	or	better,	a	specialized	synonym	database	such	as
WordNet.TDD	TemplateWhen	writing	a	TDD,	it	can	be	helpful	to	start	with	a	standard	template.	The	following	is	a	template	that	I	have	used	in	a	number	of	projects.	Note	that	this	template	should	be	customized	where	needed;	you	are	free	to	delete	sections	which	dont	apply,	add	additional	sections,	or	rename	headings	as	appropriate.Author:
IntroductionWhat	are	you	trying	to	accomplish?	Whats	wrong	with	things	the	way	they	are	now?BackgroundDescribe	any	historical	context	that	would	be	needed	to	understand	the	document,	including	legacy	considerations.TerminologyIf	the	document	uses	any	special	words	or	terms,	list	them	here.Non-GoalsIf	there	are	related	problems	that	you
have	decided	not	to	address	with	this	design,	but	which	someone	might	conceivably	expect	you	to	solve,	then	list	them	here.Proposed	DesignStart	with	a	brief,	high-level	description	of	the	solution.	The	following	sections	will	go	into	more	detail.System	ArchitectureIf	the	design	consists	of	a	collaboration	between	multiple	large-scale	components,	list
those	components	here	or	better,	include	a	diagram.Data	ModelDescribe	how	the	data	is	stored.	This	could	include	a	description	of	the	database	schema.Interface/API	DefinitionsDescribe	how	the	various	components	talk	to	each	other.	For	example,	if	there	are	REST	endpoints,	describe	the	endpoint	URL	and	the	format	of	the	data	and	parameters
used.Business	LogicIf	the	design	requires	any	non-trivial	algorithms	or	logic,	describe	them.Migration	StrategyIf	the	design	incurs	non-backwards-compatible	changes	to	an	existing	system,	describe	the	process	whereby	entities	that	depend	on	the	system	are	going	to	migrate	to	the	new	design.ImpactDescribe	the	potential	impacts	of	the	design	on
overall	performance,	security,	and	other	aspects	of	the	system.RisksIf	there	are	any	risks	or	unknowns,	list	them	here.	Also	if	there	is	additional	research	to	be	done,	mention	that	as	well.AlternativesIf	there	are	other	potential	solutions	which	were	considered	and	rejected,	list	them	here,	as	well	as	the	reason	why	they	were	not	chosen.Of	course,
these	sections	are	only	starting	points.	You	can	add	additional	sections	such	as	Design	Considerations,	Abstract,	References,	Acknowledgements,	and	so	on	as	appropriate.TDD	LifecycleDuring	construction	of	the	system,	the	TDD	serves	as	a	reference,	coordinating	the	activities	of	the	team	members	working	on	the	project.	However,	after
construction	is	finished,	the	TDD	will	continue	to	exist	and	serve	as	documentation	for	how	the	system	works.	You	may	want	to	distinguish	between	current	and	archived	TDDs.However,	there	are	two	perils	to	watch	out	for:First,	TDDs	can	quickly	become	out	of	date	as	the	system	continues	to	evolve.	An	engineer	using	a	two-year-old	TDD	as	a
reference	can	waste	a	lot	of	time	trying	to	understand	why	the	system	doesnt	behave	as	described.	Ideally,	stale	TDDs	would	be	marked	as	obsolete	or	superseded;	in	practice	this	seldom	happens,	as	teams	tend	to	focus	on	current	rather	than	past	work.	(Keeping	documentation	up	to	date	is	a	challenge	that	every	engineering	team	struggles
with.)Second,	a	TDD	may	not	include	all	of	the	information	needed	to	interface	with	the	system.	A	TDD	might	only	cover	a	set	of	changes	to	an	already-existing	system,	in	which	case	you	would	need	to	consult	earlier	documentation	(if	it	exists)	to	get	the	whole	picture.	And	a	TDD	mainly	focuses	on	implementation	details,	which	may	be	irrelevant	to
someone	who	simply	wants	to	invoke	an	API.Thus,	a	TDD	should	not	be	considered	an	adequate	substitute	for	actual	user	or	API	reference	docs.FinallyThere	are	plenty	of	other	articles	on	the	web	explaining	how	to	write	a	great	design	doc.	Dont	just	read	this	one!	Read	several,	and	then	pick	a	mix	of	ideas	that	is	right	for	you.UpdateTheres	a	follow-
on	article,	Writing	Technical	Design	Documents,	Revisited,	that	provides	some	additional	information.More	Essays	by	Talin:

Software	engineering	design	document	template.	Design	doc	software.	Engineering	design	document.	Design	document	template	example.	Design	document	template.	Engineering	template.


